Mineral deposits of Serbia

Ore deposit database

Ajducko Brdo

General data

Deposit name(s): Ajducko Brdo Identifier: YUG-00088

Commodities: Au 0 t Class Status: Deposit or prospect of unknown status

> 0 t PbZn Class N/A

> 0 t Sb N/A Class

Company:

20.337 Latitude: 43.539 District: Moravicki Longitude:

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Concordant to subconcordant stockwork (veinlets network) envelope

Mineralization Age: Tertiary

> Ore mineralogy Host rock mineralogy Hydrothermal alteration Stibnite Silicification Quartz

Marcasite Pvrite Arsenopyrite

Electrum Sphalerite Molybdenite Goethite Berthierite Chalcopyrite

Galena Senarmontite

Host rocks Age: Upper/Late Cretaceous

Hostrock formation names Host rock lithology Senonian flysch Conglomerate

Quartzlatite intrusion Marl Sandstone

Economy

Exploitation type

Unworked

Au Gold (metal)

Ore type: Ore of indeterminate nature

Past production: t Average grade: Reserve: t Average grade: Resource: Average grade:

Quartz diorite

Sb **Antimony (metal)**

Ore type: Ore in which the element forms a distinct mineral phase

Past production: t Average grade: Reserve: t Average grade: Resource: t Average grade:

PbZn Lead + Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Acid generation potential with respect to sulfides minerals.

Comments

Coordinates of the "Carte Métallogénique de l'Europe " 22.3333 - 42.55 ???

Geological references

Topalovic D. and Simic M. - (2000) - The geological, structural and metallogenical features of the Ajducko Brdo - Golija ore field in the Vardar Zone - Proceedings of the International Symposium "Geology and Metallogeny of the Dinarides and the Vardar Zone". The Academy of Sciences and Arts of the Republic of Srpska. The Departement of Natural, Mathematical and Technical Sciences, Vol. 1, pp. 435-442

Economic references

Other references

Other data bases

Ajvalija

General data

Deposit name(s): Ajvalija Identifier: YUG-00178

Commodities: Pb 215 000 t Class B Status: Dormant deposit

Zn 358 000 t Class B
Ag 242 t Class D
Au 0 t Class N/A

Company: TREPCA Mining and Metallurgical Complex

Longitude: 21.201 Latitude: 42.622 District: Kosovo

Geology

Ore deposit type (gitology)

Pb-Zn-Ag skarns and stratiform mantos: Pb, Zn, Ag, (Au)

Ore deposit shape

Discordant mass or lens of massive to submassive ore

Discordant envelope of disseminated ore

Mineralization A

Age: Tertiary

Ore mineralogy Host rock mineralogy

Sphalerite Quartz Galena Siderite

Pyrite Rhodochrosite (Dialoqite)

Marcasite Barite
Magnetite Calcite

Pyrrhotite Chalcopyrite Arsenopyrite Grey copper Gold Cubanite Stannite Bournonite

Host rocks Age:

Host rock lithology

Limestone

Quartz-sericite schist

Economy

Exploitation type

Underground mining

Ag Silver (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production:171 tAverage grade:65 g/tReserve:71 tAverage grade:70 g/tResource:- tAverage grade:- g/t

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:130000 tAverage grade:5 %Reserve:85000 tAverage grade:8.4 %Resource:- tAverage grade:- %

Zn Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:191000 tAverage grade:7.3 %Reserve:167000 tAverage grade:16.4 %Resource:- tAverage grade:- %

Au Gold (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or refractory elem

Past production:-tAverage grade:0.8g/tReserve:-tAverage grade:-g/tResource:-tAverage grade:-g/t

Environment

High acid generation potential due to the sulfides and sulfosalts minerals contained in the ore.

The Acid Rock Drainage may partly be reduced by acid-consuming minerals contained in the gangue mineralogy.

As may be released into the environment with some expected concentrations in the stream sediments.

The existence of an ore processing plant at Gracanica has generated large tailings disposals (15-18Mt) that can be a source of groundwater and surface water contamination.

Comments

The ore lenses contain 6-7% Zn, 4-5% Pb and 70-100 g/t Ag.

Massive ore bodies are estimated 7-8% Pb, 15% Zn, 100 g/t Ag, 0.8 g/t Au, 1-2% As and 0.2 % Cu (Schumacher F. - 1954)

ITT/UNMIK Mission (12/2000) : Past production (1952-1998) : 2,622,000 t @ 5.0% Pb, 7.3% Zn and 65 g/t Ag. Resources : 1,017,000 t @ 8.4% Pb, 16.4% Zn and 70 g/t Ag. The mine is flooded up to Level 8A (320 m).

Geological references

Barral J.P. - (2001) - Réhabilitation du combinat de Trepca au Kosovo - Revue de la Société de l'Industrie Minérale, IM Environnement, N°12, Avril 2001, pp. 6-10.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Klisic M. - (1995) - Deposits of lead and zinc in the ore field Ajvalija - Kisnica. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Schumacher F. - (1954) - The ore deposits of Jugoslavia and the development of its mining industry - Economic Geology, Vol 49, n°5, pp. 451-492

Economic references

Aleksinac

General data

Identifier: YUG-00138 Deposit name(s): Aleksinac

Bitum 391 000 000 t Status: Old industrial mine, abandoned deposit Commodities: Class

> 0 t Class N/A

Rudarsko Industrijski Kombinat Aleksinacki Rudnik Company:

43.577 Longitude: 21.683 Latitude: District: Nisavski

Geology

Ore deposit type (gitology)

Coal deposits

Oil shales, bituminous sandstones and limestones: oil, (S)

Ore deposit shape

Host rocks

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Miocene

> Age: Miocene Hostrock formation names Host rock lithology

Aleksinac Tertiary Basin Carbon-bearing rock s.l.

Medium- to fine-grained detrital

sediment

Bituminous or carbureted rock: clay, claystone, sand, sandstone, limestone, dolomite, etc.

Economy

Exploitation type

Room and pillar mining, room and pillar working (flat, inclined,

Coal Coal, lignite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: Average grade: Reserve: t Average grade: Resource: Average grade:

Bitum Bituminous rocks (tons of oil)

Ore type: Ore in which the element forms a distinct mineral phase

% Past production: Average grade: Reserve: % Average grade: 2391000000 t 10 % Resource: Average grade:

Environment

Potential acid rock drainage with respect of the sulfides content.

Suspended matter in mine water discharge.

Landform instability (collapses) created during and after mining operations.

Comments

Resources of oil shale: 2,391 Mt @ 10% oil, 332 Mt @ 14.5% oil up to 300 m of depth.

In 1981, the brown coal was mined by underground methods with an annual output of about 200,000 t/y.

The coal mined in the main seam contains up to 20% of moisture, about 10% of ash, 3% of sulphur. Its heating value is 16,000 kJ/kg.

Geological references

Cveticanin R. - (1982) - Review of Yugoslav coal basins. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 46-67.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Perisic M, Radenkovic C, and Urosevic P. - (1979) - Possibilities of oil shale exploitation in Serbia. - World Mining Congress, 10, 1, p. 1-11.

Alin Do

General data

Deposit name(s): Alin Do Identifier: YUG-00072

Aldinac

Commodities: Ag 0 t Class N/A Status: Deposit or prospect of unknown status

 Au
 0 t
 Class N/A

 Bi
 0 t
 Class N/A

 Cu
 0 t
 Class N/A

Company:

Longitude: 22.472 Latitude: 43.524 District: Zajecarski

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to basic-ultrabasic magmatic rocks

Alluvial-eluvial placers: Au, Pt, Sn,Ti, REE, diamond, gemstones, (Zr, etc.)

Ore deposit shape

Discordant lode or vein (thickness > 50 cm), in clusters or isolated

Mineralization Age:

Ore mineralogy Host rock mineralogy

Wolframite Siderite
Scheelite Quartz
Arsenopyrite Calcite

Pyrrhotite Pyrite Chalcopyrite Bismuthinite Sphalerite Galena Stibnite

Host rocks Age:

Hostrock formation namesHost rock lithologyHydrothermally altered gabbroGabbro

Economy

Exploitation type

Mining method unkown

Bi Bismuth (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Ag Silver (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production: - t Average grade: -

Reserve: - t Average grade: - Resource: - t Average grade: -

Au Gold (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production:-tAverage grade:-Reserve:-tAverage grade:-

Resource: - t Average grade:

Environment

The primary mineralization is mainly composed of sulfides whose oxidation generates acid, ferric iron and dissolved metals (Pb, Zn, Cu...) that can affect drainage water, soils and stream sediments.

The potential acid mine drainage generated is partly buffered by the calcite of the guangue mineralogy which is an acid-consuming mineral.

Presence of As which is highly mobile in low and high pH environments and which can be accumulated in stream sediments nearby the ore deposit.

Existence of CN or Hg associated with the gold mineral processing?

Comments

The massive ore contains 4% Bi, 4% Cu, 120 g/t Ag and 24 g/t Au, as well as 3.7% Pb, 2.8% Zn and 1.2% Sb (Jankovic - 1982).

Work on alluvials in the Knjazhevac region suggests a grade of at least 0.025 g/m3 Au.

Geological references

Anonymous. - (1983) - Production of gold-bearing sands studied. - World Mining, 36, (3), p. 72. 1983.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jelenkovic R. and Serafimovski T. - (2000) - The metallogeny of the Carpatho-Balkanides: The Eastern Serbia part. - ABCD-GEODE 2000, Bulgaria, p.32

Economic references

Other references

Other data bases

Avala

General data

Deposit name(s): Avala Identifier: YUG-00048

Crveni Breg

Commodities: Pb 9 000 t Class D Status: Old industrial mine, abandoned deposit

Zn 5 000 t *Class* D Ag 22 t *Class* E Cu 300 t *Class* E

Company:

Longitude: 20.516 Latitude: 44.659 District: Beograd

Geology

Ore deposit type (gitology)

Low-sulphidation epi- to mesothermal polymetallic-Ag veins: Pb, Zn, Ag, Mn, Cu, (As, Sb)

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Age: Miocene

Mineralization

Ore mineralogy Host rock mineralogy Hydrothermal alteration

Galena Calcite Silicification
Sphalerite Quartz Skarn formation

Chalcopyrite Axinite
Arsenopyrite Epidote
Pyrite

Host rocks Age: Cretaceous

Hostrock formation names

Lower Cretaceous sediments

Host rock lithology

Limestone

Andesite Intrusions of Miocène Sandstone Andesite

Economy

Exploitation type

Underground mining

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:300 tAverage grade:0.3 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Ag Silver (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

Rhyodacite

refractory elem

Past production:22 tAverage grade:220 g/tReserve:- tAverage grade:- g/tResource:- tAverage grade:- g/t

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:9000 tAverage grade:9 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Zn Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:5000 tAverage grade:5 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Environment

The oxydation of the primary ore mineralogy mainly composed of sulfides leads to the production of Acid Mine Drainage and highly soluble metal-sulfate-salt minerals that releases contaminants potentially affecting surface water, goundwater, soils and stream sediments.

The gangue mineralogy comprising some calcium carbonates may partly buffer the acid mine drainage production and thus control the mobility of metals.

Comments

Prior 1940, a German company mined about 100,000 t of ore with 9% Pb, 5% Zn, 2% As, 0.3% Cu and 220 g/t Ag (Schumacher - 1954)

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202. Schumacher F. - (1954) - The ore deposits of Jugoslavia and the development of its mining industry - Economic Geology, Vol 49, n°5, pp. 451-492

Economic references

Other references

Other data bases

Ва

General data

Deposit name(s): Ba Identifier: YUG-00183

Commodities: Ni 38 750 t Class C Status: Deposit of unknown status

Company:

Longitude: 20.204 Latitude: 44.163 District: Kolubarski

Geology

Ore deposit type (gitology)

Residually enriched ore deposits: Fe, Mn, Ni-Co, Au, Pt, P, U, corundum, etc. Laterite-related ore deposits: Fe, Mn, Ni-Co, Au, Pt, corundum, P, REE, Nb, etc.

Ore deposit shape

Secondary cavity- or fracture-filling orebody Stratabound envelope of disseminated ore

Mineralization Age:

Ore mineralogy Host rock mineralogy

Garnierite Calcite
Goethite Clay
Pyrite Silica

Nontronite

Host rocks Age:

Host rock lithology

Limestone Serpentinite Peridotite

Economy

Exploitation type

Mining method unkown

Ni Nickel (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:38750 tAverage grade:1.55 %

Environment

Acid generation potential due to the presence of pyrite.

Possible contamination of drainage waters by high content of suspended matter (clay minerals), and by dissolved metals such as Ni, and fe.

Comments

Sumadija Ore District (Boev and Jankovic - 1996) : 2 orebodies : Rujevak (0.5 Mt @ 1.75% Ni) and Rujevacki Potok (2 Mt @ 1.5% Ni)

Geological references

Boev B. and Jankovic S. - (1996) - Nickel and nikeliferous iron deposits of the Vardar Zone (SE Europe) with particular reference to the Rzanovo-Studena Voda ore-bearing series - University "St. Kiril and Metodij" - Skopje. Faculty of Mining and Geology - Stip. Geological Department. Special Issue n° 3, 273 p.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Badovac

General data

Deposit name(s): Badovac Identifier: YUG-00188

Commodities: Pb 192 000 t Class B Status: Dormant deposit

Zn 134 000 t *Class* C Ag 267 t *Class* D

Company: TREPCA Mining and Metallurgical Complex

Longitude: 21.230 Latitude: 42.597 District: Kosovo

Geology

Ore deposit type (gitology)

Low-sulphidation epi- to mesothermal polymetallic-Ag veins: Pb, Zn, Ag, Mn, Cu, (As, Sb)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Mineralization Age: Tertiary

Ore mineralogy

Galena Sphalerite Pyrite

Host rocks Age:

Hostrock formation names Host rock lithology

Contact serpentinite/schist and/or andesite Serpentinite
Schist (s.l.), phyllite

Dacite
Andesite
Listwaenite

Economy

Exploitation type

Underground mining

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:49000 tAverage grade:3.4 %Reserve:- tAverage grade:- %Resource:143000 tAverage grade:5.4 %

Zn Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:38000 tAverage grade:2.6 %Reserve:- tAverage grade:- %Resource:96000 tAverage grade:3.6 %

Ag Silver (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or refractory elem

Past production:70 tAverage grade:47 g/tReserve:- tAverage grade:- g/tResource:197 tAverage grade:75 g/t

Environment

High acid generation potential due to the sulfides contained in the ore.

This Acid Rock Drainage may be reduced by the acid-consuming minerals of the host rocks (listwaenites e.g).

Expected dissolved contents of Zn and Pb in drainage waters with some concentrations in stream sediments.

The existence of an ore processing plant at Gracanica has generated large tailings disposals (15-18Mt) that can be a source of groundwater and surface water contamination.

Comments

ITT/UNMIK Mission (12/2000): Past production (1961-1998): 1,468,000 t @ 3.4% Pb, 2.6% Zn and 47 g/t Ag.

Potential resources: 2,633,000 t @ 5.4% Pb, 3.6% Zn and 75 g/t Ag (categories B+C1)

Geological references

Barral J.P. - (2001) - Réhabilitation du combinat de Trepca au Kosovo - Revue de la Société de l'Industrie Minérale, IM Environnement, N°12, Avril 2001, pp. 6-10.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Klisic M. - (1995) - Deposits of lead and zinc in the ore field Ajvalija - Kisnica. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Economic references

Bancarevo

General data

Deposit name(s): Bancarevo Identifier: YUG-00079

Donja Studena

Commodities: Cu 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 22.102 Latitude: 43.246 District: Pirotski

Geology

Ore deposit type (gitology)

Red Bed (sandstone) hosted base metal deposits: Cu, Pb-Zn-Ag, F-Ba Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Stratabound envelope of disseminated ore

Mineralization Age:

Ore mineralogy

Chalcocite
Chalcopyrite
Azurite
Malachite
Bornite

Enargite

Host rocks Age: Permian

Host rock lithology
Sandstone

Economy

Exploitation type

Unworked

Cu Copper (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Presence of sulfide minerals assemblage that can generate Acid Mine Drainage production.

Comments

Geological references

Economic references

Other references

Other data bases

Bare

General data

Deposit name(s): Bare Identifier: YUG-00155

Vrbica

Commodities: KIn 23 000 000 t Class B Status: Deposit of unknown status

Company:

Longitude: 20.500 Latitude: 44.325 District: Sumadijski

Geology

Ore deposit type (gitology)

Supergene industrial rock and mineral deposits: clays, kaolin, silica sand, etc.

Ore deposit shape

Tabular-shaped orebody of secondary origin

Mineralization Age: Paleogene (Lower/Early Tertiary)

Ore mineralogy Host rock mineralogy

Kaolinite Quartz Halloysite Feldspar

Illite Vermiculite

Host rocks Age: Lower/Early Jurassic (Lias)

Hostrock formation names

Bukulja granite

Host rock lithology

Granite (s.l.)

Economy

Exploitation type

Surface mining

Kln Kaolin (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:23000000 tAverage grade:23 %

Environment

Potential contamination of drainage water by suspended matter and clay minerals. Geomorphic modifications in the landscape.

Comments

Geological references

Maksimovic Z and Nikolic D. - (1978) - The primary kaolin deposits of Yugoslavia. - Schriftenreihe fuer Geologische Wissenschaften, 74, 11, p. 179-196.

Simic V. and Jovic V. - (1997) - Genetic types of kaolin and kaolinite clay deposits in Serbia - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 197-201

Vakanjac B. - (1982) - Geology of deposits of non-metallic minerals and mineral construction materials. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 95-111.

Economic references

Barosevac

General data

Deposit name(s): Barosevac Identifier: YUG-00152

Commodities: Dtm 0 t Class N/A Status: Unexploited deposit

Company: Rudnici lignita BASEN KOLUBARA - EPS

Longitude: 20.377 Latitude: 44.405 District: City of Beograd

Geology

Ore deposit type (gitology)

Sedimentary-related industrial rocks and minerals: Clays, limestones, dolomite, calcite, siliceous sand,

quartzite, etc.

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Pontian

Ore mineralogy

Silica

Host rocks Age: Pontian

Hostrock formation names Host rock lithology

Kolubara Coal Basin Medium- to fine-grained detrital

sediment Diatomite

Economy

Exploitation type
Unworked

Dtm Diatomite (kieselguhr) (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

No specific environmental signature.

Comments

Kolubara Coal Basin, diatomite never recovered.

Geological references

Vakanjac B. - (1982) - Geology of deposits of non-metallic minerals and mineral construction materials. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 95-111.

Economic references

Bela Stena

General data

Deposit name(s): Bela Stena Identifier: YUG-00073

Commodities: Mg 4 000 000 t Class C Status: Old industrial mine, exhausted deposit

Company: Magnohrom - Fabrika Magnezijuma Bela Stena

Longitude: 20.624 Latitude: 43.374 District: Raski

Geology

Ore deposit type (gitology)

Lacustrine deposits (sebkha, salar, alkaline lake): Li, B, (Na, Mg, Ca, nitrates, sulphates, etc.)

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Miocene

Ore mineralogy Host rock mineralogy

Magnesite (Giobertite) Dolomite

Clay

Host rocks Age: Miocene

Hostrock formation names Host rock lithology

Jarando Miocene basin Varved lacustrine sediment

Carbonaceous rock: clay, sandstone,

etc.

Economy

Exploitation type

Surface mining

Mg Magnesium, magnesite (MgCO3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:4000000 tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Erosion of earthen materials exposed at the site may cause significant loadings of sediments to nearby waterbodies and the source of degradation of surface water quality.

Comments

Production of more than 4 Mt of high-grade magnesite. The ore lens was up to 95 m thick and 250 m long. The ore contain 44% MgO, 1.5% SiO2, 2-6% CaO and is enriched in boron.

Geological references

Dedic L., Mozina A., Radulovic P., Joksimovic D. and Jovovic M. - (1995) - Non metalic sources deposit of the Kopaonik area. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Fallick AE, Ilich M, and Russell MJ. - (1991) - A stable isotope study of the magnesite deposits associated with the alpine-type ultramafic rocks of Yugoslavia. - Economic Geology and the Bulletin of the Society of Economic Geologists, 86, (4), p. 847-861.

Jankovic S and Petkovic M. - (1980) - The main lead, zinc and copper deposits of Yugoslavia; excursion No. 202 C. - Yugoslavia; outline of Yugoslavian geology; Excursion 201 A-202 C. Grubic A (Ed), Int, Geol. p. 75-94.

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S. - (1984) - Major metallogenic units and ore deposits in Yugoslavia. - Earth Science (Paris) = Sciences de la Terre (Paris), 17, p. 385-394.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Joksimovic D., Anicic S., Stefanovska D. and Seke L. - (1995) - Potential from mineral sources of neogene basin Jarandol. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Karamata S, Obradovic J, Vasic N. - (1984) - Sedimentary magnesite deposits in the Dinaride ophiolite belt. - International Geological Congress, Abstracts - Congrès Géologique Internationale, Résumés, p. 86-86.

Morteani G, Moeller P, and Schley F. - (1982) - The rare earth element contents and the origin of the sparry magnesite mineralizations of Tux-Lanersbach, Entachen Alm, Spiessnaegel, and Hochfilzen, Austria, and the lacustrine magnesite deposits of Aiani-Kozani, Greece, and Bela Stena, Yugoslavia. - Economic Geology and the Bulletin of the Society of Economic Geologists, 77, 3, p. 617-631.

Petrov VP, Vakanjac B, Joksimovic D, Zekic M, and Lapcevic I. - (1980) - Magnesite deposits of Serbia and their origin. - International Geology Review, 22, (5), p. 497-510.

Vakanjac B. - (1982) - Geology of deposits of non-metallic minerals and mineral construction materials. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 95-111.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Other references

Other data bases

Carte Métallogénique de l'Europe

26-087

Belacevac

General data

Deposit name(s): Belacevac Identifier: YUG-00035

Commodities: Coal 000 000 000 t Class B Status: Producing industrial mine

Company: Elektroprivreda Kosova

Longitude: 21.034 Latitude: 42.631 District: Kosovo

Geology

Ore deposit type (gitology)

Lignite deposits

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Pliocene

Host rocks Age: Pliocene

Hostrock formation names Host rock lithology

Kosovo Coal Basin Medium- to fine-grained detrital

sediment

Bituminous or carbureted rock: clay, claystone, sand, sandstone, limestone, dolomite, etc.

Economy

Exploitation type

Open cast (open pit) mining Bucket wheel dredging

Coal Coal, lignite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: 79500000 t Average grade: Reserve: - t Average grade: Resource: 5920500000 t Average grade: -

Environment

Acid rock drainage due to the presence of iron sulphur minerals.

Landforms instability created during mining operations and suspended matter in mine water discharge.

Trace metals content may exist (PGE, radionuclides ?).

Comments

In 1964, 2.2 Mt were mined. In 1970, Dobro Selo and Belacevac produced 3.9 Mt. In 1990, 6.2 Mt were mined from these 2 deposits of the North Kosovo Basin.

The Kosovo Basin (North and South) contains approximately 12 billion tons of Pliocene lignite. Kosovo coal is of the poorly consolidated lignite type. It has a 45% moisture content, of which 15% hydromoisture, an average of about 15% ash and 1% sulphur. Its heating value is about 8,000 kJ/kg.

Electric Power Industry of Serbia - Report 1998 :

The Kosovo-Metohija coal basin covers an area of about 250 km². The average coal layer thickness is 41 m and may reach 100 m. It contains 12 billion tons of lignite, only 2.65% has been excavated.

Geological references

Cveticanin R. - (1982) - Review of Yugoslav coal basins. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 46-67.

Nikolic P. and Dimitrijevic D. - (1990) - Ugalj Jugoslavije : Geologija i proizvodno razvojni potencijali lezista i rudnika uglja - Coal of Yugoslavia - Beograd : Pronalazastvo, 1990, 464 p.

Ruppert L, Finkelman R, Boti E, Milosavljevic M, Tewalt S, Simon N, and Dulong F. - (1996) - Origin and significance of high nickel and chromium concentrations in Pliocene lignite of the Kosovo Basin, Serbia. - International Journal of Coal Geology, 29, (4), p. 235-258.

Economic references

Anonymous - (1998) - Electric Power Industry of Serbia - 1998 - EPS, Beograd 1998, 152 p.

Anonymous - (1999) - Electric Power Industry of Serbia - 1999 - EPS, Public Relations Center, Beograd, 56 p.

Anonymous. - (1982) - Jugoslavija za Rudarstvo. - 11th World Mining Congress, Beograd. 172 p.

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Ilic LJ and Spasic N. - (1979) - Der Abbau von Braunkohle aus einem Bergrutsch in Tagebau "Kosovo"-Belacevac Translated Title: The exploitation of lignite from a landslide in the "Kosovo"-Belacevac opencast mine. - Proceedings of the Congress of the International Society for Rock Mechanics, 4, 1, p. 671-675.

Salatic D. - (1999) - Mineral potential and its valorisation in yugoslavia - "VIII Balkan Mineral Processing Conference", 13-18 september 1999, Beograd, 9 p.

Beli Kamen

General data

Deposit name(s): Beli Kamen Identifier: YUG-00037

Kosovska Kamenica

Commodities: Mg 0 t Class N/A Status: Deposit of unknown status

TIC 0 t Class N/A

Company: Rudnik i Industrija Magnezita Strezovce - Kosovska

Longitude: 21.585 Latitude: 42.595 District: Kosovo

Geology

Ore deposit type (gitology)

Evaporite-related industrial rocks and minerals: attapulgite, gypsum, anhydrite, magnesite, sulphur

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Miocene

Ore mineralogy

Magnesite (Giobertite)

Talc

Host rocks Age: Miocene

Host rock lithology

Marl

Dolomitic limestone

Economy

Exploitation type

Surface mining

Mg Magnesium, magnesite (MgCO3)

Resource:

Ore type: Carbonates, phosphates, sulphates and insoluble primary halides (fluorite, barite, etc.)

Average grade:

Past production:-tAverage grade:-Reserve:-tAverage grade:-

Tic Talc (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Emission of particulate matters in the form of fugitive dust.

Comments

In 1982, current output was 300,000 t of raw run of mine magnesite.

Several lenses, contains 30,000 to 1Mt of magnesite

The ore contains 45% MgO, 0.5-2.0% SiO2 and 0.5-2.5% CaO (Jankovic - 1982)

Other name: Strezovce

Geological references

Fallick AE, Ilich M, and Russell MJ. - (1991) - A stable isotope study of the magnesite deposits associated with the alpine-type ultramafic rocks of Yugoslavia. - Economic Geology and the Bulletin of the Society of Economic Geologists, 86, (4), p. 847-861. Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Vakanjac B. - (1982) - Geology of deposits of non-metallic minerals and mineral construction materials. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 95-111.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Beljanica

General data

Deposit name(s): Beljanica Identifier: YUG-00062

Commodities: Fe 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 21.783 Latitude: 44.050 District: Pomoravski

Geology

Ore deposit type (gitology)

Fe and Mn sedimentary deposits: Fe, Mn

Unspecified volcano-sedimentary and sedimentary-exhalative deposits

Ore deposit shape

Stratabound bed (single or multi-layered)

Mineralization Age:

Ore mineralogy

Hematite Magnetite

Niagnetite

Fe-Chlorite

Host rocks Age:

Economy

Exploitation type

Unworked

Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: - t Average grade:

Reserve: - t Average grade: - Resource: - t Average grade: -

Environment

Particulate and colloidal iron and manganese compounds in discharge water.

Comments

Geological references

Antonijevic I. - (1983) - Lezista gvozda Srbije Translated Title: The iron ore deposits of Serbia. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 41, p. 5-40.

Economic references

Other references

Other data bases

Belo Brdo

General data

Deposit name(s): Belo Brdo Identifier: YUG-00075

Kopaonik

Commodities: Pb 254 000 t Class B Status: Dormant deposit

 Zn
 208 000 t
 Class
 B

 Ag
 387 t
 Class
 D

 Au
 0 t
 Class
 N/A

Company: TREPCA Mining and Metallurgical Complex

Longitude: 20.843 Latitude: 43.230 District: Kosovo

Geology

Ore deposit type (gitology)

Pb-Zn-Ag skarns and stratiform mantos: Pb, Zn, Ag, (Au)

Ore deposit shape

Breccia-pipe, funnel, chimney, column, brecciated dyke *Mineralization Age:* Neogene (Miocene to Pliocene)

Ore mineralogy Host rock mineralogy Hydrothermal alteration
Galena Garnet Skarn formation

Sphalerite Epidote
Pyrite Hedenbergite
Arsenopyrite Wollastonite
Chalcopyrite Scapolite
Pyrrhotite Actinolite
Grey copper

Proustite
Pyrargyrite
Bismuth
Gold

Host rocks Age: Cretaceous

Hostrock formation names

Contact limestone - quartz-latite

Limestone

Latite Skarn

Economy

Exploitation type

Underground mining

Ag Silver (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production:292 tAverage grade:76 g/tReserve:95 tAverage grade:75 g/tResource:- tAverage grade:- g/t

Au Gold (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:203000 tAverage grade:5.3 %Reserve:51000 tAverage grade:4 %Resource:- tAverage grade:- %

Zn Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:152000 tAverage grade:3.9 %Reserve:56000 tAverage grade:4.4 %Resource:- tAverage grade:- %

Environment

The primary mineralization is mainly composed of sulfides whose oxidation generates acid, ferric iron and dissolved metals (Pb, Zn, Cu...) that can affect drainage water, soils and stream sediments.

Presence of As which is highly mobile in low and high pH environments and which can be accumulated in stream sediments nearby the ore deposit.

The ore processing plant located in Lepocavic has generated large amounts of tailings (8 Mt).

Comments

In 1981, the annual output was 100,000 t of ore containing 8 % PbZn.

The mine started before the 2nd WW, so far, over 2.2 Mt of ore containing 12% PbZn have been mined.

Mining Magazine 04/1981: a new PbZn mine is expected to begin production in the Mt Kopaonik. It will also produce Au, Ag and Cd. Expected production is 5,625 t/y Zn, 2,269 t/y Pb, 3 t/y Ag, 82.5 kg/y Au and 31 t/y Cd: Belo Brdo ???

High grade PbZn ore contains up to 1 g/t Au, 10-50 g/t Ag, 6-12% Zn and 3-5% Pb. Skarn mineralization contains 2.7 g/t Au, 16 g/t Ag and 0.5% Pb. Pyrite concentrate contains up to 30 g/t Au.

Mission ITT/UNMIK (12/2000) : Past production (1937-2000) : 3,848,000 t @ 5.3% Pb, 3.9% Zn and 76 g/t Ag. Resources : 1,265,000 t @ 4.0% Pb, 4.4% Zn and 75 g/t Ag.

Geological references

Barral J.P. - (2001) - Réhabilitation du combinat de Trepca au Kosovo - Revue de la Société de l'Industrie Minérale, IM Environnement, N°12, Avril 2001, pp. 6-10.

Jancovic S, Milovanovic D, Jelenkovic R, and Hrkovic K. - (1992) - Gold Deposits and Occurences in Serbia: Types, Metallogenic Units and Outlook. - Chair of Economic geology, Faculty of Mining and Geology, University of Belgrade, Belgrade. 285 p.

Jankovic S and Jelenkovic R. - (1995) - Gold mineralization in Yugoslavia; metallogenic environments and associations of minerals. - Studia Universitatis Babes Bolyai, Geologia. 40, (1), p. 85-102.

Jankovic S. - (1978) - Izotopni sastav olova u pojedinim tertsijarnim olovo-tsinkovim rudishtima Srpsko-makedonske metalogenetske provintsije Translated Title: The isotopic composition of lead in some Tertiary lead-zinc deposits within the Serbo-Macedonian metallogenic province - Geoloshki Anali Balkanskoga Poluostrva, 42, p. 507-525.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S. - (1984) - Major metallogenic units and ore deposits in Yugoslavia. - Earth Science (Paris) = Sciences de la Terre (Paris), 17, p. 385-394.

Jankovic T and Grujicic V. - (1976) - Morfoloske karakteristike rudnih tela u lezistu Belo Brdo, Kopaonik Translated Title: Morphological characteristics of ore bodies in the Belo Brdo Deposit, Kopaonik. - Jugoslovanski Geoloski Kongres, 8, (5), p. 87-96.

Miletic G. and M. Mladenovic - (1995) - Promising areas lead and zinc deposit Belo Brdo. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Novovic T. - (1979) - Marusic Pb-Zn pojava na Kopaoniku Translated Title: Marusic Pb- Zn occurrence at Kopaonik. - Glasnik Prirodnjackog Muzeja u Beogradu, Serija A: Mineralogija, Geologija, Paleontologija, 34, p. 59-64.

Schumacher F. - (1954) - The ore deposits of Jugoslavia and the development of its mining industry - Economic Geology, Vol 49, n° 5, pp. 451-492

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Other references

Other data bases

Beocin

General data

Deposit name(s): Beocin Identifier: YUG-00222

Commodities: LstC 0 t Class N/A Status: Producing industrial mine

Company: Beocinska fabrika cementa a.d.

Longitude: 19.725 Latitude: 45.187 District: Juzno-backi

Geology

Ore deposit type (gitology)

Sedimentary-related industrial rocks and minerals: Clays, limestones, dolomite, calcite, siliceous sand, quartrite, etc.

quartzite, etc.

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age:

Host rocks Age: Miocene

Host rock lithology

Marl Limestone

Economy

Exploitation type

Surface mining

LstC Cement limestone (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-

Resource: - t Average grade:

Environment

Dust production and fallout.

Geomorphic modifications in the landscape (quarry).

Comments

Production 1990: 1,206 kt

Geological references

llich M. - (1991) - Yugoslavian cement. Raw materials and production - Industrial Minerals, november 1991, pp. 59-61

Economic references

Blagodat

General data

Deposit name(s): Blagodat Identifier: YUG-00094

Commodities: Pb 138 000 t Class B Status: Producing industrial mine

Zn 118 000 t *Class* **C Cu** 8 800 t *Class* **E**

Company: Rudnik i Flotacija Olova i Cinka Blagodat

Longitude: 22.252 Latitude: 42.524 District: Pcinjski

Geology

Ore deposit type (gitology)

Atypical volcano-sedimentary and sedimentary-exhalative ore deposits: metamorphosed VMS or Sedex

deposits, etc.

Pb-Zn-Ag skarns and stratiform mantos: Pb, Zn, Ag, (Au)

Ore deposit shape

Subconcordant or stratabound mass or lens of massive to submassive ore

Stratabound envelope of disseminated ore

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Cenozoic

Ore mineralogyHost rock mineralogyHydrothermal alterationSphaleriteDiopsideSkarn formation

Galena Hedenbergite
Pyrite Epidote
Pyrrhotite

Cubanite
Chalcopyrite
Grey copper
Arsenopyrite
Gold
Loellingite
Magnetite

Host rocks Age:

Hostrock formation names

Surdulica granitic massif

Host rock lithology

Gneiss (s.l.)

Chloritic schist, chlorite schist of

sedimentary origin

Dacite
Andesite
Granodiorite

Marble, cipolin (crystalline limestone)

Economy

Exploitation type

Room and pillar mining, room and pillar working (flat, inclined,

step)

Sublevel caving

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:138000 tAverage grade:2.35 %Reserve:- tAverage grade:4.34 %Resource:- tAverage grade:- %

Zn Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:118000 tAverage grade:2 %Reserve:- tAverage grade:4.45 %Resource:- tAverage grade:- %

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:8800 tAverage grade:0.15 %Reserve:- tAverage grade:0.15 %Resource:- tAverage grade:- %

Environment

The ore content in sulfides (Pb, Zn and Iron) generate acid and dissolved metals during oxidation. Mine waters draining such deposit are acidic and metal-rich due to the lack of acid-neutralizing capacity of the altered igneous host rock and the lack of reactivity of the calc-silicate minerals of the gangue.

Acid generation and drainage can affect both surface and groundwater.

Presence of As that can be released into the environment by arsenopyrite when oxydized.

No information related to mine waste deposits as well as to tailings which are potential sources of contaminants in the form of particulates and dissolved metals.

Comments

The mine was started up in 10/1974

Annual ore output was about 300,000 t/y and processing yields about 9,600 t of Pb concentrate and 12,670 t of Zn concentrate, that meaning a ore-grade of about 2.35% Pb and 2.00 % Zn.

The ore is also with Ag and Cd.

The massive ore contains 3-7% Pb and 6-13% Zn.

Grade of the reserves: 4.34% Pb, 4.45% Zn and 0.15% Cu (Simic - 1997)

Between 1988-1991, the annual output was 235,000 t of ore

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S. - (1984) - Major metallogenic units and ore deposits in Yugoslavia. - Earth Science (Paris) = Sciences de la Terre (Paris), 17, p. 385-394.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Simic M. - (1997) - Geological-structural features of the Besna Kobila Zone in SE Serbia - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 185-195

Strucl I. - (1981) - Die schichtgebundenen Blei-Zink-Lagerstaetten Jugoslawiens Translated Title: The stratiform lead-zinc deposits of Yugoslavia. - Mitteilungen der Oesterreichischen Geologischen Gesellschaft, 74-75, p. 307-322.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Other references

Other data bases

Blagojev Kamen

General data

Deposit name(s): Blagojev Kamen Identifier: YUG-00056

Neresnica

0 t Status: Deposit of unknown status N/A Commodities: Class

> Au 0 t Class N/A 0 t Class N/A

Company:

44.457 District: Branicevski Longitude: 21.818 Latitude:

Geology

Ore deposit type (gitology)

Granitic and peri-granitic veins and stockworks (greisen): Sn-W, (Cu, Bi, Sb, base metals)

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Mineralization Age:

> Ore mineralogy Host rock mineralogy Hydrothermal alteration

Gold Quartz Pyritization

Scheelite Ankerite

Pyrite Galena Sphalerite Chalcopyrite Pyrrhotite Grey copper Pyrargyrite

Age: Precambrian Host rocks

> Host rock lithology Hostrock formation names

Chlorite schist and chloritic schist of Mafic volcano-sedimentary sequence

igneous origin Precambrian Greenstone Series

Metavolcaniclastic (meta-volcano-

sedimentary) rock s.l

Economy

Exploitation type

Underground mining

Gold (metal) Au

Ore type: Ore of indeterminate nature

Past production: Average grade: Reserve: t Average grade:

Resource: Average grade:

W Wolfram (WO3)

Ore type: Ore of indeterminate nature

Past production: t Average grade: Reserve: t Average grade: t

Silver (metal) Ag

Resource:

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

Average grade:

refractory elem

Past production: Average grade: t Reserve: t Average grade:

t Resource: Average grade:

Environment

The oxydation of the primary ore mineralogy mainly composed of sulfides, generates Acid Mine Drainage and readily soluble sulfate minerals which can affect both surface and groundwater, as well as stream sediments. Existence of CN or Hg associated with the gold mineral processing?

Comments

Quartz veins are the source of gold alluvial placers along Pek river. In the veins, gold values range from traces to 30 g/t (average 10 g/t), WO3 contents are variable, mostly 0.2-2.0%.

Blagojev Kamen was in operation up to 1963, producing gold and scheelite. The veins are usually 0.2-1.1 m thick and up to 100-200 m long (Jankovic - 1982).

Deposits names: Brodica, Badalan, etc.

Geological references

Jancovic S, Milovanovic D, Jelenkovic R, and Hrkovic K. - (1992) - Gold Deposits and Occurences in Serbia: Types, Metallogenic Units and Outlook. - Chair of Economic geology, Faculty of Mining and Geology, University of Belgrade, Belgrade. 285 p.

Jankovic S and Jelenkovic R. - (1995) - Gold mineralization in Yugoslavia; metallogenic environments and associations of minerals. - Studia Universitatis Babes Bolyai, Geologia. 40, (1), p. 85-102.

Jankovic S. - (1967) - Metalogenetske epohe i rudonosna podrucja jugoslavije. - Beograd, 1967.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jelenkovic R. and Serafimovski T. - (2000) - The metallogeny of the Carpatho-Balkanides: The Eastern Serbia part. - ABCD-GEODE 2000, Bulgaria, p.32

Schumacher F. - (1954) - The ore deposits of Jugoslavia and the development of its mining industry - Economic Geology, Vol 49, n°5, pp. 451-492

Economic references

Other references

Other data bases

Bobija

General data

Deposit name(s): Bobija Identifier: YUG-00151

Commodities: PbZn 200 000 t Class B Status: Deposit of unknown status

Brt 300 000 t Class C

Company:

Longitude: 19.533 Latitude: 44.192 District: Macvanski

Geology

Ore deposit type (gitology)

Carbonate-hosted stratabound and vein Ba or F deposits (MVT): Ba, F, (Pb, Zn)

Sedimentary-exhalative to volcano-sedimentary Mn or Ba: Mn, Ba

Ore deposit shape

Concordant to subconcordant mass, lens or pod of massive to submassive ore

Mineralization Age: Middle Triassic (Muschelkalk)

Ore mineralogy Host rock mineralogy

Pyrite Barite Galena Siderite

Sphalerite

Host rocks Age: Middle Triassic (Muschelkalk)

Economy

Exploitation type

Unworked

Brt Barite (BaSO4)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:300000 tAverage grade:67.5 %

PbZn Lead + Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:200000 tAverage grade:10 %Resource:-tAverage grade:-%

Environment

May have acid generation potential due to the sulfidic content of the ore.

This Acid Rock Drainage can be buffered by the geological context and the presence of carbonates.

Comments

Geological references

Popovic R. - (1991) - Pojava sulfidne mineralizacije u Dolovima (dolina reke Ljubovide, zapadna Srbija) Translated Title: Occurrence of sulfide mineralization in Dolovi, the Ljubovida River valley, western Serbia. - Glasnik Prirodnjackog Muzeja u Beogradu, Serija A: Mineralogija, Geologija, Paleontologija, 46, p. 143-149.

Vakanjac B. - (1982) - Geology of deposits of non-metallic minerals and mineral construction materials. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 95-111.

Economic references

Ceh M, Kocanovic M, and Mihailovic B. - (1979) - Poluindustrijska ispitivanja koncentracije baritne rude lezista "Bobija", Ljubovija Translated Title: Pilot tests of barite ore concentration in the Bobija Deposit, Ljubovija. - Rudarski Glasnik, 1, p. 46-52.

Bogovina

General data

Deposit name(s): Bogovina Identifier: YUG-00227

Commodities: Coal 0 t Class N/A Status: Producing small-scale mine

Company: Rudnik mrkog uglja BOGOVINA - EPS

Longitude: 21.956 Latitude: 43.892 District: Zajecarski

Geology

Ore deposit type (gitology)

Coal deposits

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

MineralizationAge: Oligocene (Middle Tertiary)Host rocksAge: Oligocene (Middle Tertiary)

Host rock lithology

Bituminous or carbureted rock: clay, claystone, sand, sandstone, limestone, dolomite, etc.

Coarse-grained detrital rock s.s.

Medium- to fine-grained detrital

sediment

Economy

Exploitation type

Underground mining

Coal Coal, lignite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Potential Acid Rock Drainage generation due to the presence of possible sulfides minerals.

Suspended matter in mine discharge.

Colliery spoil heaps erosion, instability and combustion.

Comments

2 coal seams separated by about 10 m.

Bogovina coal contains up to 20% of moisture, up to 10% of ash and up to 2% of sulphur. Its heating value is about 17,000 kJ/kg.

Geological references

Cveticanin R. - (1982) - Review of Yugoslav coal basins. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 46-67.

Economic references

Anonymous - (1998) - Electric Power Industry of Serbia - 1998 - EPS, Beograd 1998, 152 p.

Anonymous - (1999) - Electric Power Industry of Serbia - 1999 - EPS, Public Relations Center, Beograd, 56 p.

Bor

General data

Deposit name(s): Bor Identifier: YUG-00061

Commodities: Au 160 t Class B Status: Old industrial mine, exhausted deposit

 Cu
 3 000 000 t
 Class B

 Ag
 600 t
 Class C

 Pltd
 0 t
 Class N/A

Company: Rudarsko Topionicarski Basen BOR

Longitude: 22.094 Latitude: 44.095 District: Borski

Geology

Ore deposit type (gitology)

High-sulphidation epithermal massive-enargite (gold) sulphide deposits: Cu, (As, Au)

Porphyry Cu-Mo and Mo deposits: Cu, Mo, (W, U, Re)

Ore deposit shape

Subconcordant or stratabound mass or lens of massive to submassive ore

Concordant to subconcordant stockwork (veinlets network) envelope

Stratabound envelope of disseminated ore

Mineralization Age: Upper/Late Cretaceous

Ore mineralogy Host rock mineralogy Hydrothermal alteration

Enargite Quartz Silicification

Pyrite Barite Advanced argillic alteration

ChalcopyritePyrophylliteSericitizationBorniteDiasporeChloritizationChalcociteAluniteCarbonatizationCovelliteAnhydrite

Sulphur

Molybdenite Magnetite Pyrrhotite Galena Sphalerite

Grey copper

Age: Upper/Late Cretaceous

Hostrock formation names Host rock lithology

Timok andesite complex Andesite

Volcaniclastic rocks: pyroclastic rocks, volcaniclastic (volcano-detrital, volcano-sedimentary) rocks

Economy

Exploitation type

Host rocks

Surface mining Underground mining

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:3000000 tAverage grade:1.5 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

g/t

Au Gold (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or refractory elem

Past production: 160 t Average grade: 3.2 g/t Reserve: - t - g/t Average grade: - t Resource: Average grade:

Ag Silver (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

600 t Past production: Average grade: 10.3 q/t - t Reserve: Average grade: g/t Resource: t Average grade: g/t

Pltd Platinoids, group (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production: Average grade: Reserve: Average grade:

Resource: Average grade:

Environment

Extreme Acid Mine Drainage production due to the sulfides and sulfosalts assemblages. This AMD is enhanced by the types of hydrothermal alteration (argillic, sericitic..) that greatly increase acid-generating capacity.

Presence of As released by enargite. This element tends to be accumulated in the stream sediments of the water drainage downstream the ore deposit and may cause acute environmental and health problems.

Potential damages may arise from both extraction/beneficiation operations and smelting facilities. Most of the releases occurring from those operations involve inadequate containment of tailings, waste rocks, metallurgical slags, process water, waste water, acid mine drainage and storm water.

Comments

The ore contained 1-2 % Cu, up to 5 g/t Au, up to 10 g/t Ag and significant amounts of Ge, Se, Ni and minor amounts of Pt.

The deposit contains 13 known orebodies: Tilva Ros, Coka Dulkan, Tilva Mika, Kamenjar, Tilva Ronton, Sistek, etc.

At the top of the system, Tilva Ros orebody contained gold in a highly silicified cap (1.8 to 18.9 g/t, average at 2.3 g/t Au, 10.55 g/t Ag and 0.04% Cu for reserves as 8.2 Mt)

The massive copper ore zone contains 2.6 - 3.75 g/t Au, 9.8 to 10.9 g/t Ag and 5.6-7.4 % Cu. Past production and current reserves indicate that the massive copper ore contained 160 t of Au, 600 t of Ag and 3 Mt of Cu.

Data in Laznicka P. (1985) p 974 2.75 Mt Cu (1%), 190 t Au and 1,000 t Ag

In 1981, Bor was still operating at a rate of 4 Mt/y of ore (35,000 t/y Cu).

Geological references

Bogdanovic PO. - (1976) - Metalogenetska rejonizacija istocne Srbije Translated Title: Metallogenic zoning of eastern Serbia. -Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 33-34, p. 111-133.

Cvetkovic L and Karanovic L. - (1993) - Occurrence of arsenosulvanite at the Bor copper deposit, eastern Serbia, Yugoslavia. - N. Jb. Miner. Abh, Monatshefte. 1993, (7), p. 289-296.

Herrington R.J., Jankovic S. and Kozelj D. - (1998) - The Bor and Majdanpek copper-gold deposits in the context of the Bor Metallogenic Zone (Serbia, Yougoslavia) - MDSG 98 Programme at St Andrews Scotland 13th-15th December 1998, 10 p.

Jancovic S, Milovanovic D, Jelenkovic R, and Hrkovic K. - (1992) - Gold Deposits and Occurences in Serbia: Types, Metallogenic Units and Outlook. - Chair of Economic geology, Faculty of Mining and Geology, University of Belgrade, Belgrade. 285 p.

Jankovic S and Jelenkovic R. - (1995) - Gold mineralization in Yugoslavia; metallogenic environments and associations of minerals. - Studia Universitatis Babes Bolyai, Geologia. 40, (1), p. 85-102.

Jankovic S and Petkovic M. - (1980) - The main lead, zinc and copper deposits of Yugoslavia; excursion No. 202 C. - Yugoslavia; outline of Yugoslavian geology; Excursion 201 A-202 C. Grubic A (Ed), Int, Geol. p. 75-94.

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S, Herrington RJ, Kozelj D, and Porter TMe. - (1998) - The Bor and Majdanpek copper-gold deposits in the context of the Bor metallogenic zone (Serbia, Yugoslavia) In: Porphyry and hydrothermal copper & gold deposits; a global perspective; conference proceedings. - Porphyry and hydrothermal copper & gold deposits; a global perspective. Perth, West.Aust., Australia. Nov. 30-Dec. 1, 1998.

Jankovic S, Petkovic M, Tomson IN, and Kravcov V. - (1980) - Porphyry copper deposits in the Serbo-Macedonian Province, southeastern Europe. - Special Publication of the Society for Geology Applied to Mineral Deposits, 1, p. 96-102.

Jankovic S, Terzic M, Aleksic D, Karamata S, Spasov T, Jovanovic M, Milicic M, Miskovic V, Grubic A, and Antonijevic I. - (1980) - Metallogenic features of copper deposits in the volcano- intrusive complexes of the Bor District, Yugoslavia. - Special Publication of the Society for Geology Applied to Mineral Deposits, 1, p. 42-49.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S. - (1984) - Major metallogenic units and ore deposits in Yugoslavia. - Earth Science (Paris) = Sciences de la Terre (Paris), 17, p. 385-394.

Jankovic S. - (1990) - Types of copper deposits related to volcanic environment in the Bor District, Yugoslavia. - Geol. Rundsch, 79, (2), p. 467-478.

Jelenkovic R. and Serafimovski T. - (2000) - The metallogeny of the Carpatho-Balkanides: The Eastern Serbia part. - ABCD-GEODE 2000, Bulgaria, p.32

Karamata S, Knezevic V, Djordjevic P, and Milovanovic D. - (1983) - Alterations in the Bor copper deposit and their significance for explanation of the ore genesis. - Geologicky Sbornik, 34, (1), p. 45-52.

Karamata S., Knezevic V., Pecskay Z. and Djordjevic M. - (1997) - Magmatism and metallogeny of the Ridanj-Krepoljin belt (eastern Serbia) and their correlation with northern and eastern analogues - Mineralium Deposita, 32, pp. 452-458

Kozelj D. - (1996) - Metallogenetic characteristics of copper ore deposit "Cementation", Bor, Yugoslavia. - International Geological Congress, Abstracts - Congrès Géologique Internationale, Résumés, 30, 2, p. 619-619.

Krstanovic I and Janjic S. - (1981) - Crystallographic investigation of sulphide minerals from the Bor copper deposit. - Bulletin Academie Serbe des Sciences et des Arts, Classe des Sciences, p. 59-65.

Oruzinsky V. - (1990) - K pozicii sekundarnych kvarcitov v loziskach porfyrovych medenych rud Translated Title: The location of secondary quartzite in porphyry copper deposits. - Mineralia Slovaca, 22, 3, p. 251-261.

Schumacher F. - (1954) - The ore deposits of Jugoslavia and the development of its mining industry - Economic Geology, Vol 49, n° 5, pp. 451-492

Serafimovski T., Kozelj D. and Jelenkovic R. - (2000) - The morphogenetic types of the epithermal gold mineralization in Serbia and Macedonia - Metallogeny 2000, Review and perspectives - Symposium in honor of the retirement of Bernard Poty, Nancy (France), University Henri Poincare - Nancy 1. pp.151-152.

Sillitoe RH. - (1980) - The carpathian-Balkan porphyry copper belt. A cordilleran perspective. - European Copper Deposits. Jankovic S and Sillitoe RH (Eds), UNESCO - IGCP Projects N° 169 and 63, Belgrade. p. 26-35.

Sillitoe RH. - (1983) - Enargite-bearing massive sulfide deposits high in porphyry copper systems. - Economic Geology and the Bulletin of the Society of Economic Geologists, 78, 2, p. 348-352.

Economic references

Anonymous. - (1979) - Yugoslavia's metal with a future. - Metal Bulletin Monthly, December 1979, p. 30-36.

Anonymous. - (1981) - New Yugoslav Pb/ Zn mine. - Mining Magazine, 144, (4), p. 290. 1981.

Anonymous. - (1982) - Jugoslavija za Rudarstvo. - 11th World Mining Congress, Beograd. 172 p.

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Graham G. - (1982) - Bor starts up new mine. - Metal Bulletin, 6729, p. 13. 1982.

Jeremic ML. - (1978) - A case history of ground behavior in transverse cut-and-fill mining at Choka Dulkan, Bor copper mine, Yugoslavia. - Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, Incorporated (AIME), 264, p. 374-378.

Lewis A. - (1983) - Yugoslavia's "RTB Bor" copper combine; Europe's largest copper producer eliminates concentrate imports as the new Veliki Krivelj complex reaches capacity. - E&M J, 184, (10), p. 70-74.

Salatic D. - (1999) - Mineral potential and its valorisation in yugoslavia - "VIII Balkan Mineral Processing Conference", 13-18 september 1999, Beograd, 9 p.

Steblez W. - (1998) - Republics of the former Yugoslavia. - Mining Annual Review, 1998, p. 218-221.

Other references

Other data bases

Boranja

General data

Deposit name(s): Boranja Identifier: YUG-00098

Commodities: Fe 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 19.201 Latitude: 44.390 District: Macvanski

Geology

Ore deposit type (gitology)

Fe (magnetite) skarns: Fe, (Co)

Ore deposit shape

Discordant mass or lens of massive to submassive ore

Mineralization Age: Cenozoic

Ore mineralogyHydrothermal alterationMagnetiteSkarn formation

Pyrrhotite Molybdenite Scheelite Bismuthinite

Host rocks Age:

Hostrock formation names

Boranja granodiorite Massif

Host rock lithology
Granodiorite

Skarn

Marble, cipolin (crystalline limestone)

Economy

Exploitation type

Mining method unkown

Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Moderate acid generation potential due to the presence of Pyrrhotite.

Comments

Name of several deposits around Boranja granodiorite and including several ore deposits and occurrences: Majdan, Duge Njive, etc.

Geological references

Anonymous. - (1978) - The Iron Ore Deposits of Europe and adjacent Areas. - Explanatory Notes to the International Map of the Iron Ore Deposits of Europe, 1:2,500,000. Zitzmann A. Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover. 386 p.

Durickovic A. - (1982) - Metalogenija rudnog polja Brasina-Zajaca-Stolice-Dobri Potok Translated Title: Metallogeny of the Brasina mining field, Zajaca, Stolice, Dobri Potok. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 40, p. 17-53.

Jancovic S, Mozgova NN, and Borodaev YS. - (1977) - The complex antimony-lead/ zinc deposit at Rujevac/ Yugoslavia; its specific geochemical and mineralogical features. - Mineralium Deposita, 12, (3), p. 381-392.

Jankovic S. - (1967) - Metalogenetske epohe i rudonosna podrucja jugoslavije. - Beograd, 1967.

Jankovic S. - (1977) - The iron ore deposits in Yugoslavia. - The iron ore deposits of Europe and adjacent areas; explanatory notes to the International map of the iron ore deposits of Europe, 12,500,000; Volume I, Text and figures. Zitzmann A (Ed), Bundesanst, Geowiss. p. 411-418.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

YUG-00098

Economic references

Other references

Other data bases

The Iron Ore Deposits of Europe - 1978 YU02

Borska Reka

General data

Deposit name(s): Borska Reka Identifier: YUG-00134

Commodities: Au 139 t Class B Status: Dormant deposit

 Cu
 3 665 000 t
 Class
 B

 Ag
 1 136 t
 Class
 C

Company: Rudarsko Topionicarski Basen BOR

Longitude: 22.088 Latitude: 44.082 District: Borski

Geology

Ore deposit type (gitology)

Porphyry Cu-Au deposits: Cu, Au, (Ag, Bi, Te)

Ore deposit shape

Stratabound envelope of disseminated ore

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Upper/Late Cretaceous

Ore mineralogyHydrothermal alterationChalcopyritePotassic alterationPyriteSericitizationMagnetiteSilicificationTellurideChloritization

Molybdenite Chalcocite Covellite Bornite

Host rocks Age: Upper/Late Cretaceous

Hostrock formation names

Timok andesite complex

Andesite

Economy

Exploitation type

Underground mining

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:-tAverage grade:-%Resource:3665000 tAverage grade:0.62 %

Au Gold (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:- tAverage grade:- g/tReserve:- tAverage grade:- g/tResource:139 tAverage grade:0.24 g/t

Ag Silver (metal)

Ore type: Ore of indeterminate nature

Past production:- tAverage grade:- g/tReserve:- tAverage grade:- g/tResource:1136 tAverage grade:1.92 g/t

Environment

Extreme Acid Mine Drainage production due to the sulfides assemblages and the large alteration halos. This AMD is enhanced by the types of hydrothermal alteration (argillic, sericitic...) that greatly increase acid-generating

capacity.

Produced mine waters or drainage waters tend to have a high base metal content particularly enriched in Cu and Tl.

Comments

Downdip extension of Bor deposit

Geological references

Jancovic S, Milovanovic D, Jelenkovic R, and Hrkovic K. - (1992) - Gold Deposits and Occurences in Serbia: Types, Metallogenic Units and Outlook. - Chair of Economic geology, Faculty of Mining and Geology, University of Belgrade, Belgrade. 285 p. Jankovic S and Jelenkovic R. - (1995) - Gold mineralization in Yugoslavia; metallogenic environments and associations of minerals. - Studia Universitatis Babes Bolyai, Geologia. 40, (1), p. 85-102.

Jankovic S. - (1990) - Types of copper deposits related to volcanic environment in the Bor District, Yugoslavia. - Geol. Rundsch, 79, (2), p. 467-478.

Jelenkovic R. and Serafimovski T. - (2000) - The metallogeny of the Carpatho-Balkanides: The Eastern Serbia part. - ABCD-GEODE 2000, Bulgaria, p.32

Packovski G., Ljubojev V. and Krstic S. - (2000) - Mineralogical composition of the porphyry copper mineralization "Borska Reka" in the Bor ore field, the metallogenic Province of the Carpatho-Balkanides - Proceedings of the International Symposium "Geology and Metallogeny of the Dinarides and the Vardar Zone". The Academy of Sciences and Arts of the Republic of Srpska. The Departement of Natural, Mathematical and Technical Sciences, Vol. 1, pp. 519-523

Economic references

Lewis A. - (1983) - Yugoslavia's "RTB Bor" copper combine; Europe's largest copper producer eliminates concentrate imports as the new Veliki Krivelj complex reaches capacity. - E&M J, 184, (10), p. 70-74.

Braneshci

General data

Deposit name(s): Braneshci Identifier: YUG-00171

Branesko Polje

Commodities: Mg 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 19.707 Latitude: 43.779 District: Zlatiborski

Geology

Ore deposit type (gitology)

Lacustrine deposits (sebkha, salar, alkaline lake): Li, B, (Na, Mg, Ca, nitrates, sulphates, etc.)

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Cenozoic

Ore mineralogy

Magnesite (Giobertite)

Dolomite

Host rocks Age:

Hostrock formation names Host rock lithology

Tertiary lacustrine sediments

Varved lacustrine sediment

Biochemical deposit s.l.

Economy

Exploitation type
Unworked

Mg Magnesium, magnesite (MgCO3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Potential contamination of drainage waters by suspended matter.

Comments

Geological references

Fallick AE, Ilich M, and Russell MJ. - (1991) - A stable isotope study of the magnesite deposits associated with the alpine-type ultramafic rocks of Yugoslavia. - Economic Geology and the Bulletin of the Society of Economic Geologists, 86, (4), p. 847-861. Petrov VP, Vakanjac B, Joksimovic D, Zekic M, and Lapcevic I. - (1980) - Magnesite deposits of Serbia and their origin. - International Geology Review, 22, (5), p. 497-510.

Economic references

Brasina

General data

Deposit name(s): Brasina Identifier: YUG-00157

Commodities: Sb 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 19.195 Latitude: 44.491 District: Macvanski

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Vein and disseminated Sb deposits: Sb, Hg, As, (Au, Tl)

Ore deposit shape

Stratabound envelope of disseminated ore

Mineralization Age: Cenozoic

Ore mineralogy Host rock mineralogy Hydrothermal alteration

Stibnite Quartz Silicification

Pyrite Chalcedony
Chalcopyrite Calcite
Galena

Host rocks Age:

Economy

Exploitation type

Mining method unkown

Sb Antimony (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:

Reserve:

- t

Average grade:

- t

Average grade:

Resource: - t Average grade:

Environment

Acid generation potential due to the sufides minerals contained in the ore.

Expected dissolved content of Cu and Sb in drainage waters.

Comments

Geological references

Durickovic A. - (1982) - Metalogenija rudnog polja Brasina-Zajaca-Stolice-Dobri Potok Translated Title: Metallogeny of the Brasina mining field, Zajaca, Stolice, Dobri Potok. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 40, p. 17-53. Jankovic S. - (1979) - Antimony deposits in south-eastern Europe. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 37, p. 25-48.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Brdjani

General data

Deposit name(s): Brdjani Identifier: YUG-00054

Bela Kamen

Beli Kamen (Brdjani)

Commodities: Mg 0 t Class N/A Status: Deposit of unknown status

Company: Rudnici Magnezita Sumadija - Cacak

Longitude: 20.225 Latitude: 44.000 District: Moravicki

Geology

Ore deposit type (gitology)

Asbestos, talc or magnesite deposits hosted by basic and ultrabasic rocks

Ore deposit shape

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Miocene

Ore mineralogy Host rock mineralogy

Magnesite (Giobertite) Quartz
Dolomite Silica

Chalcedony

Host rocks Age:

Hostrock formation names Host rock lithology

Maljen and Suvobor Ultramafic Massif Basic to ultrabasic rock s.l.

Serpentinite

Economy

Exploitation type
Surface mining

Mg Magnesium, magnesite (MgCO3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Erosion of earthen materials exposed at the site may cause significant loadings of sediments to nearby waterbodies and the source of degradation of surface water quality.

Comments

Geological references

Ilic M. - (1998) - Gem raw materials and their occurrence in Serbia - Juvelirske mineralne sirovine i njihova nalazista u Srbiji - Beograd, Univerzitet, Rudarsko-geoloski fakultet, 140 p.

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S. - (1984) - Major metallogenic units and ore deposits in Yugoslavia. - Earth Science (Paris) = Sciences de la Terre (Paris), 17, p. 385-394.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Petrov VP, Vakanjac B, Joksimovic D, Zekic M, and Lapcevic I. - (1980) - Magnesite deposits of Serbia and their origin. - International Geology Review, 22, (5), p. 497-510.

YUG-00054

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Other references

Other data bases

Brezak

General data

Deposit name(s): Brezak Identifier: YUG-00046

Commodities: Mg 0 t Class N/A Status: Deposit of unknown status

Company: Rudnici Magnezita Sumadija Cacak

Longitude: 20.100 Latitude: 44.140 District: Kolubarski

Geology

Ore deposit type (gitology)

Asbestos, talc or magnesite deposits hosted by basic and ultrabasic rocks

Ore deposit shape

Discordant lode or vein (thickness > 50 cm), in clusters or isolated

Mineralization Age

Ore mineralogy

Magnesite (Giobertite)

Host rocks Age:

Hostrock formation names Host rock lithology

Maljen and Suvobor Ultrabasic Massifs

Basic to ultrabasic rock s.l.

Economy

Exploitation type

Underground mining

Mg Magnesium, magnesite (MgCO3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:

Reserve:

Resource:

- t

Average grade:

Average grade:

Average grade:

Environment

No specific environmental signature is known with this type of ore deposit.

Comments

Magnesite mining has been carried out since 1927.

The length of ore veins ranges from 100 to 1,500 m, thickness between 1 and 10 m.

Average annual output is 120,000 t of high grade magnesite concentrate.

Geological references

Dedic L and Pavlovic Z. - (1980) - Pojave talksista u producju Crnog vrha (zapadna Srbija) Translated Title: Talc-schist occurrences in Crni vrh area; West Serbia. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 38-39, p. 37-43.

Fallick AE, Ilich M, and Russell MJ. - (1991) - A stable isotope study of the magnesite deposits associated with the alpine-type ultramafic rocks of Yugoslavia. - Economic Geology and the Bulletin of the Society of Economic Geologists, 86, (4), p. 847-861.

Lapcevic I. - (1982) - Pojave magnezita mrezastog tipa kod Razane u Zapadnoj Sroiji Translated Title: Netted type magnesite occurrences at Razana in West Serbia. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 40, p. 55-72.

Vakanjac B and Ilich M. - (1980) - Non-metallics in the ultramafites of the ophiolite complex of Yugoslavia. - Ophiolites; International ophiolite symposium. Nicosia, Cyprus. April 1-8, 1979. p. 722-726.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Other references

Other data bases

Brezna

General data

Deposit name(s): Brezna Identifier: YUG-00069

Commodities: Cr 0 t Class N/A Status: Group of mineral occcurrences

Company:

Longitude: 19.583 Latitude: 43.583 District: Zlatiborski

Geology

Ore deposit type (gitology)

Ophiolite-hosted ore deposits: Cr, (PGE)

Ore deposit shape

Pod, pod-shaped body

Mineralization Age:

Ore mineralogy

Chromite

Host rocks Age:

Hostrock formation names Host rock lithology

Zlatibor Peridotites Massif Dunite

Economy

Exploitation type

Mining method unkown

Cr Chrome (Cr2O3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-

Resource: - t Average grade:

Environment

No specific environmental signature.

Comments

2 Brezna: 20.6832/43.5643 or 20.2571/44.0564 ???

Zlatibor district: more than 80 occurrences of chromite, of massive type-ore, several hundred tons of reserve

Geological references

Economic references

Other references

Other data bases

Brezovica

General data

Deposit name(s): Brezovica Identifier: YUG-00090

Ostrovica

Commodities: Cr 350 000 t Class D Status: Deposit or prospect of unknown status

Company:

Longitude: 21.012 Latitude: 42.244 District: Kosovo

Geology

Ore deposit type (gitology)

Ophiolite-hosted ore deposits: Cr, (PGE)

Ore deposit shape

Concordant to subconcordant mass, lens or pod of massive to submassive ore

Mineralization Age:
Ore mineralogy
Chromite

Host rocks Age:

Host rock lithology
Peridotite
Dunite

Economy

Exploitation type

Mining method unkown

Cr Chrome (Cr2O3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:350000 tAverage grade:43 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Environment

No specific environmental signature according to the data available.

Comments

Extracted: 350.000 t at 43% Cr2O3

Geological references

Obradovic LJ. - (1986) - Short review of the chemistry of chromites from Brezovica, Yugoslavia. - Chromites. Theophrastus Publ S.A., Athens. p. 91-105.

Economic references

Other references

Other data bases

Bujanovac

General data

Deposit name(s): Bujanovac Identifier: YUG-00092

Ogoska Reka

Trnovac

Commodities: KIn 5 625 000 t Class C Status: Deposit of unknown status

Sb 0 t Class N/A

Company:

Longitude: 21.744 Latitude: 42.477 District: Pcinjski

Geology

Ore deposit type (gitology)

Vein and disseminated Sb deposits: Sb, Hg, As, (Au, Tl)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)
Discordant envelope of disseminated ore

Mineralization Age: Cenozoic

Ore mineralogy Host rock mineralogy Hydrothermal alteration

Stibnite Quartz Kaolinization
Pyrite Calcite Silicification
Marcasite Chalcedony

Galena Opal
Sphalerite Barite
Bravoite Montmori

Bravoite Montmorillonite

Realgar Illite
Orpiment Kaolinite

Host rocks Age:

Hostrock formation names

Bujanovac granite massif

Host rock lithology
Granite (s.l.)

Schist/shale

Economy

Exploitation type

Mining method unkown

Sb Antimony (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

KIn Kaolin (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:- tAverage grade:-Reserve:- tAverage grade:-Resource:5625000 tAverage grade:-

Environment

Acid generation potential due to the sulfides minerals and the ore composition.

Due to the presence of cinabar and realgar/orpiment in the ore, Arsenic and Mercury, two toxic elements for human health can be present in drainage water at a high content.

YUG-00092

Comments

Other name: Gornji Vrtogos (Simic and al - 1997).

The thickness of kaolinized zones varies from 0.5 to 25 m, with the lens of over 1500 m and their vertical stretch of over 200 m;

Geological references

Jankovic S. - (1967) - Metalogenetske epohe i rudonosna podrucja jugoslavije. - Beograd, 1967.

Jankovic S. - (1979) - Antimony deposits in south-eastern Europe. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 37, p. 25-48.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Maksimovic Z and Nikolic D. - (1978) - The primary kaolin deposits of Yugoslavia. - Schriftenreihe fuer Geologische Wissenschaften, 74, 11, p. 179-196.

Simic V. and Jovic V. - (1997) - Genetic types of kaolin and kaolinite clay deposits in Serbia - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 197-201

Economic references

Other references

Other data bases

Bukulja

General data

Deposit name(s): Bukulja Identifier: YUG-00050

Commodities: U 0 t Class N/A Status: Dormant deposit

Company:

Longitude: 20.535 Latitude: 44.298 District: Kolubarski

Geology

Ore deposit type (gitology)

Sedimentary uranium deposits: U, (V, Mo, Ni, Cu, Zn, Pb, As)

Shear-zone related mesothermal uranium deposits: U, (Fe, Cu, Pb, Zn, Se)

Ore deposit shape

Stratiform envelope of disseminated ore

Discordant lode or vein (thickness > 50 cm), in clusters or isolated

Mineralization Age

Ore mineralogy Hydrothermal alteration

AutuniteKaolinizationUraniniteSericitizationHematitePyritizationGalenaChloritizationSphaleriteSilicification

Pyrrhotite Pyrite

Host rocks Age: Cenozoic

Hostrock formation names

Tertiary sediments

Granite

Granite

Detrital rock s.l.

Economy

Exploitation type

Unworked

U Uranium (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Potential production of Acid Rock Drainage and associated metals (Fe, Zn, Pb..).

The hydrothermal alteration tends to increase acid -generating capacity.

Presence of radioactive elements leads to the emission of Radon and Gamma radiations.

Comments

The uranium content ranges from 0.03 to 0.08% U3O8.

Geological references

Anonymous. - (1980) - World Uranium - Geology and Resource Potential. - IUREP. Miller Freeman Publications, San Francisco. 524 p.

Antonovic A. - (1992) - Uporedna analiza odredivanja sadrzaja urana raznim radiometrijskim metodama u lezistu Cigankulja (Bukulja) Translated Title: Comparative study of uranium analyses by various radiometric methods in the Cigankulja (Bukulja) ore deposit. - Radovi Geoinstitut, 27, p. 235-250.

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S. - (1967) - Metalogenetske epohe i rudonosna podrucja jugoslavije. - Beograd, 1967.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Jelenkovic R., Jankovic S. and Serafimovski T. - (1997) - Prognosis Map of the Besna Kobila Mo-Pb-Zn-W Metallogenetic Zone - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 159-167

Jelenkovic R., Serafimovski T. and Lazarov P. - (1997) - Uranium Mineralization in the Serbo-Macedonian Massif and the Vardar Zone: Types and Distribution Pattern - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 149-157

Klajn D. - (1983) - Uranium hydrothermal mineralization in the Borac-Rudnik Area (Sumadija); possible relation with buried stratiform ore deposits. - Anuarul Institutului de Geologie si Geofizica = Annuaire de l'Institut de Geologie et de Geophysique, 61, p. 199-204.

Mihajlovic K. - (1978) - Aluvijalno leziste kasiterita - Cigankulja Translated Title: The alluvial cassiterite deposit in Cigankulja. - IX Kongres Geologa Jugoslavije. Sarajevo, Yugoslavia. 1978. p. 620-624.

Economic references

Other references

Other data bases

Car Sedlar

General data

Identifier: YUG-00086 Deposit name(s): Car Sedlar

190 000 t Deposit of unknown status Commodities: Class Status:

Company:

42.604 Longitude: 21.744 Latitude: District: Pcinjski

Geology

Ore deposit type (gitology)

Banded iron formations (BIF "Superior Fe"): Fe

Atypical volcano-sedimentary and sedimentary-exhalative ore deposits: metamorphosed VMS or Sedex

Ore deposit shape

Subconcordant or stratabound mass or lens of massive to submassive ore

Mineralization Age: Precambrian

Ore mineralogy

Magnetite Hematite Pyrrhotite Pyrite Chalcopyrite Galena

Host rocks Age:

Host rock lithology

Amphibolite (s.l.)

Ferriferous quartzite, Banded Iron Formation (BIF), itabirite

Economy

Exploitation type

Mining method unkown

Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: 10000 t % Average grade: 180000 t Reserve: Average grade: 50 % Resource: Average grade: %

Environment

Sulfide facies ores may pose a potential source of acid rock drainage.

Comments

Crude ore contains 45-55% Fe, 10% SiO2, 4 % CaO, 0.3% Mn, 0.5% P and 2-3% S (Jankovic - 1982)

Geological references

Antonijevic I. - (1983) - Lezista gvozda Srbije Translated Title: The iron ore deposits of Serbia. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 41, p. 5-40.

Jankovic S. - (1977) - The iron ore deposits in Yugoslavia. - The iron ore deposits of Europe and adjacent areas; explanatory notes to the International map of the iron ore deposits of Europe, 12,500,000; Volume I, Text and figures. Zitzmann A (Ed), Bundesanst, Geowiss. p. 411-418.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-

YUG-00086

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-121
The Iron Ore Deposits of Europe - 1978 YU03

Cerovo

General data

Deposit name(s): Cerovo Identifier: YUG-00124

Commodities: Cu 1 010 000 t Class B Status: Industrial project under development

Au 32 t Class C

Company: Rudarsko Topionicarski Basen BOR

Longitude: 22.038 Latitude: 44.178 District: Borski

Geology

Ore deposit type (gitology)

Porphyry Cu-Au deposits: Cu, Au, (Ag, Bi, Te)

Ore deposit shape

Discordant envelope of disseminated ore

Mineralization Age:

Ore mineralogy Hydrothermal alteration

Pyrite Silicification
Chalcopyrite Propylitization
Chalcocite

Host rocks Age: Upper/Late Cretaceous

Host rock lithology

Andesite

Pyroclastic rocks s.l.

Diorite

Quartz diorite

Economy

Exploitation type

Surface mining

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:1010000 tAverage grade:0.32 %

Au Gold (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production:- tAverage grade:- g/tReserve:- tAverage grade:- g/tResource:32 tAverage grade:0.1 g/t

Environment

Extreme Acid Rock Drainage production due to the sulfidic composition of the primary ore, the widespread alteration halos and its mineral assemblage.

Potential release of Cu and others metals into the drainage water.

Comments

Cerovo, Drenovo and Cementacija deposits

Geological references

Jancovic S, Milovanovic D, Jelenkovic R, and Hrkovic K. - (1992) - Gold Deposits and Occurences in Serbia: Types, Metallogenic Units and Outlook. - Chair of Economic geology, Faculty of Mining and Geology, University of Belgrade, Belgrade. 285 p.

Jankovic S and Jelenkovic R. - (1995) - Gold mineralization in Yugoslavia; metallogenic environments and associations of minerals. - Studia Universitatis Babes Bolyai, Geologia. 40, (1), p. 85-102.

Jankovic S, Terzic M, Aleksic D, Karamata S, Spasov T, Jovanovic M, Milicic M, Miskovic V, Grubic A, and Antonijevic I. - (1980) - Metallogenic features of copper deposits in the volcano- intrusive complexes of the Bor District, Yugoslavia. - Special Publication of the Society for Geology Applied to Mineral Deposits, 1, p. 42-49.

Jankovic S. - (1990) - Types of copper deposits related to volcanic environment in the Bor District, Yugoslavia. - Geol. Rundsch, 79, (2), p. 467-478.

Karamata S., Knezevic V., Pecskay Z. and Djordjevic M. - (1997) - Magmatism and metallogeny of the Ridanj-Krepoljin belt (eastern Serbia) and their correlation with northern and eastern analogues - Mineralium Deposita, 32, pp. 452-458

Kozelj D. - (1996) - Metallogenetic characteristics of copper ore deposit "Cementation", Bor, Yugoslavia. - International Geological Congress, Abstracts - Congrès Géologique Internationale, Résumés, 30, 2, p. 619-619.

Economic references

Salatic D. - (1999) - Mineral potential and its valorisation in yugoslavia - "VIII Balkan Mineral Processing Conference", 13-18 september 1999, Beograd, 9 p.

Cigankulja

General data

Deposit name(s):CigankuljaIdentifier:YUG-00220Commodities:Sn0 tClassN/AStatus:Dormant deposit

Company:

Longitude: 20.414 Latitude: 44.299 District: Kolubarski

Geology

Ore deposit type (gitology)

Alluvial-eluvial placers: Au, Pt, Sn, Ti, REE, diamond, gemstones, (Zr, etc.)

Ore deposit shape

Stratabound envelope of disseminated ore

Mineralization Age:

Ore mineralogy

Cassiterite Ilmenite Magnetite Zircon Rutile

Host rocks Age: Quaternary

Host rock lithology
Alluvium s.l.

Economy

Exploitation type
Unworked

Sn Tin (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Potential contamination of surface water by suspended matter (high turbidity) that can affect water ecosystems. Geomorphic modifications of water bodies.

Comments

Geological references

Mihajlovic K. - (1978) - Aluvijalno leziste kasiterita - Cigankulja Translated Title: The alluvial cassiterite deposit in Cigankulja. - IX Kongres Geologa Jugoslavije. Sarajevo, Yugoslavia. 1978. p. 620-624.

Economic references

Cikatovo

General data

Deposit name(s): Cikatovo Identifier: YUG-00027

Commodities: Ni 287 800 t Class B Status: Dormant deposit

Co 0 t Class N/A

Company: Ferronikeli

Longitude: 20.903 Latitude: 42.656 District: Kosovo

Geology

Ore deposit type (gitology)

Laterite-related ore deposits: Fe, Mn, Ni-Co, Au, Pt, corundum, P, REE, Nb, etc.

Ore deposit shape

Cap, blanket, crust

Mineralization Age:

Ore mineralogy Host rock mineralogy

Saponite Opal
Nontronite Serpentine
Garnierite Dolomite
Goethite Quartz
Goethite Chalcedony

Wad Psilomelane

Host rocks Age:

Hostrock formation names Host rock lithology

Dobrosevac harzburgite Basic to ultrabasic rock s.l.

Harzburgite

Economy

Exploitation type

Surface mining

Ni Nickel (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:170300 tAverage grade:1.31 %Reserve:117500 tAverage grade:1.175 %Resource:- tAverage grade:- %

Co Cobalt (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production:-tAverage grade:-%Reserve:-tAverage grade:0.07%Resource:-tAverage grade:-%

Environment

The main potential environmental problems are related to :

- the clay minerals assemblage existing in a lateritic context. Trough erosion of exposed mining areas, those assemblages generate high suspended solids content in surface water that can produce many impacts associated with surface waters, groundwater and terrestrial ecosystems;
- the disssolved metals (Ni, Co and Fe, Mn) that migrate from old mining operations to local ground and surface water.

Comments

In 1982, Glavica and Cikatovo started in production for the Glogovac smelting plant

The combined reserves were estimated in 1978 to be 26.7 Mt averaging 1.2 - 1.5% Ni

The combined annual output was planned to be 983,000 t of dry ore containing 1.32% Ni and 0.07% Co.

Located in the Dobrosevac Ore Field (Boev and Jankovic - 1996):

Discovered in 1967. 2 orebodies: Suka and Duskaja

At the begining of exploitation, the probable and possible reserves amounted to 13 Mt @ 1.31% Ni and 0.07% Co. Most of the ore reserves are mined out but new ones have been discovered. In 1988, the ore reserves amounted to 10 Mt @ 1.15-1.20% Ni.

Geological references

Boev B. and Jankovic S. - (1996) - Nickel and nikeliferous iron deposits of the Vardar Zone (SE Europe) with particular reference to the Rzanovo-Studena Voda ore-bearing series - University "St. Kiril and Metodij" - Skopje. Faculty of Mining and Geology - Stip. Geological Department. Special Issue n° 3, 273 p.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Mitrovic M and Misirlic M. - (1978) - Prilog utvradivanju mineralnog sastava niklonosne rude iz Golesa i Cikatova, SAP Kosovo Translated Title: The determination of nickel-bearing ore mineral composition from Goles and Cikatovo; SAP Kosovo. - Rudarski Glasnik, 1, p. 31-46.

Ruppert L, Finkelman R, Boti E, Milosavljevic M, Tewalt S, Simon N, and Dulong F. - (1996) - Origin and significance of high nickel and chromium concentrations in Pliocene lignite of the Kosovo Basin, Serbia. - International Journal of Coal Geology, 29, (4), p. 235-258.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Salatic D. - (1999) - Mineral potential and its valorisation in yugoslavia - "VIII Balkan Mineral Processing Conference", 13-18 september 1999, Beograd, 9 p.

Coka Kuruga

General data

Deposit name(s): Coka Kuruga Identifier: YUG-00200

Commodities: Au 2 t Class D Status: Deposit of unknown status

Cu 13 000 t *Class* D

Company: Rudarsko Topionicarski Basen BOR

Longitude: 21.981 Latitude: 44.230 District: Borski

Geology

Ore deposit type (gitology)

High-sulphidation epithermal massive-enargite (gold) sulphide deposits: Cu, (As, Au)

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age: Upper/Late Cretaceous

Host rocks Age: Upper/Late Cretaceous

Hostrock formation names

Bor magmatic Complex

Economy

Exploitation type

Mining method unkown

Cu Copper (metal)

Ore type: Ore of indeterminate nature

Past production: - t Average grade: - %

Reserve: - t Average grade: - %

Resource: 13000 t Average grade: 0.9 %

Au Gold (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-g/tReserve:-tAverage grade:-g/t

Resource: 1.5 t Average grade: 1 g/t

Environment

No data available.

Comments

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Coka Marin

General data

Identifier: YUG-00135 Deposit name(s): Coka Marin

Au 10 t С Status: Dormant deposit Commodities: Class

> 33 000 t PbZn Class С 25 000 t Cu D Class 96 t Ε Ag Class

Rudarsko Topionicarski Basen BOR Company:

22.013 44.284 Longitude: Latitude: District: Borski

Geology

Ore deposit type (gitology)

Volcanogenic massive sulphides (VMS) deposits: Cu, Pb, Zn +/- Au-Ag, (Sn, S, As, Cd, Bi, etc.) High-sulphidation epithermal massive-enargite (gold) sulphide deposits: Cu, (As, Au)

Ore deposit shape

Stratabound envelope of disseminated ore

Subconcordant or stratabound mass or lens of massive to submassive ore

Concordant to subconcordant stockwork (veinlets network) envelope

Mineralization Age: Upper/Late Cretaceous

Ore mineralogy Host rock mineralogy Hydrothermal alteration Pyrite Pyritization Quartz

Pyrrhotite Advanced argillic alteration **Barite**

Marcasite Chloritization Anhydrite Enargite Silicification Siderite Luzonite

Calcite

Fluorite

Chalcopyrite Bornite Sphalerite Galena Grey copper Gold Stannite Cassiterite Bravoite

Host rocks Age: Upper/Late Cretaceous

Hostrock formation names Host rock lithology

Upper Cretaceous Andesite-dacite Volcaniclastic rocks s.l. (volcanovolcanics sedimentary, volcano-detrital,

containing volcanogenic constituents: lithic fragments, lapilli, goundmass or

cement) Andesite

Undifferentiated volcanic breccia

Economy

Exploitation type

Mining method unkown

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: t Average grade: % % Reserve: t Average grade: 25000 t Resource: Average grade: 1.04 %

Gold (metal) Au

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production: Average grade: g/t - t g/t Reserve: Average grade:

Resource: 10 t Average grade: 4.2 q/t

PbZn Lead + Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: % t Average grade: % Reserve: Average grade: 33000 t 11.7 % Resource: Average grade:

Ag Silver (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production: Average grade: g/t g/t Reserve: t Average grade: 96 t Resource: Average grade: 40 g/t

Environment

High acid generation potential due to the sulfides minerals content and the hydrothermal alteration halos (pyritization and advanced argillic alteration).

Potential dissolved contents of Fe, Mn, Zn et Cu in drainage and groundwater with possible concentration of released As into stream sediments.

Comments

Massive ore contains 1-3% Cu, 5-8% Zn and up to 1% Pb. The gold content ranges between 5 and 10 g/t, locally over 20 g/t. The Cu concentrate contains 7.7 g/t Au, 352 g/t Ag, 23 g/t Pt, 252 g/t Te, 186 g/t Ge, 78 g/t Ga, 50 g/t Mo, 203 g/t Sn and 1,000 g/t Se. Resources Copper ore: 2.1 Mt @ 0.9% Cu, 2.9 g/t Au and 19 g/t Ag

Resources PbZn ore: 0.3 Mt @ 2.1% Cu, 3.2% Pb, 8.5% Zn, 15.8 g/t Au and 200 g/t Ag

Geological references

Jancovic S, Milovanovic D, Jelenkovic R, and Hrkovic K. - (1992) - Gold Deposits and Occurences in Serbia: Types, Metallogenic Units and Outlook. - Chair of Economic geology, Faculty of Mining and Geology, University of Belgrade, Belgrade. 285 p.

Jankovic S and Jelenkovic R. - (1995) - Gold mineralization in Yugoslavia: metallogenic environments and associations of minerals. - Studia Universitatis Babes Bolyai, Geologia. 40, (1), p. 85-102.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S. - (1990) - Types of copper deposits related to volcanic environment in the Bor District, Yugoslavia. - Geol. Rundsch, 79, (2), p. 467-478.

Jelenkovic R. and Serafimovski T. - (2000) - The metallogeny of the Carpatho-Balkanides: The Eastern Serbia part. - ABCD-GEODE 2000, Bulgaria, p.32

Karamata S., Knezevic V., Pecskay Z. and Djordjevic M. - (1997) - Magmatism and metallogeny of the Ridanj-Krepoljin belt (eastern Serbia) and their correlation with northern and eastern analogues - Mineralium Deposita, 32, pp. 452-458

Economic references

Crna Trava

General data

Deposit name(s): Crna Trava Identifier: YUG-00107

Vlasina

Commodities: Fe 20 125 000 t Class C Status: Deposit of unknown status

Company:

Longitude: 22.328 Latitude: 42.740 District: Pcinjski

Geology

Ore deposit type (gitology)

Unspecified volcano-sedimentary and sedimentary-exhalative deposits

Fe and Mn sedimentary deposits: Fe, Mn

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization A

Age: Precambrian

Ore mineralogy

Magnetite

Hematite

Host rocks Age: Precambrian

Hostrock formation names

Greenschists of Crna Trava

Host rock lithology

Greenschist (s.l.)

Economy

Exploitation type

Mining method unkown

Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:125000 tAverage grade:55.87 %Reserve:- tAverage grade:- %Resource:20000000 tAverage grade:- %

Environment

Particulate and colloidal iron compounds in discharge water.

Comments

Geological references

Anonymous. - (1978) - The Iron Ore Deposits of Europe and adjacent Areas. - Explanatory Notes to the International Map of the Iron Ore Deposits of Europe, 1:2,500,000. Zitzmann A. Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover. 386 p. Antonijevic I. - (1983) - Lezista gvozda Srbije Translated Title: The iron ore deposits of Serbia. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 41, p. 5-40.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Economic references

Other references

Other data bases

The Iron Ore Deposits of Europe - 1978 YU27

YUG-00107

Crnac

General data

Deposit name(s): Crnac Identifier: YUG-00112

Plakaonica

Commodities: Pb 204 000 t Class B Status: Dormant deposit

Zn 89 000 t *Class* **C Ag** 279 t *Class* **D**

Company: TREPCA Mining and Metallurgical Complex

Longitude: 20.693 Latitude: 43.083 District: Kosovo

Geology

Ore deposit type (gitology)

Low-sulphidation epi- to mesothermal polymetallic-Ag veins: Pb, Zn, Ag, Mn, Cu, (As, Sb)

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Neogene (Miocene to Pliocene)

Ore mineralogy Host rock mineralogy Hydrothermal alteration

Galena Quartz Silicification
Sphalerite Calcite Kaolinization

Pyrite Rhodochrosite (Dialoqite)

Arsenopyrite
Chalcopyrite
Grey copper
Pyrrhotite

Host rocks Age:

Hostrock formation names Host rock lithology

Amphibolite-quartzlatite contact Amphibolite (s.l.)
Gabbro-amphibolite contact Gabbro

Serpentinite Latite

Economy

Exploitation type

Sublevel stoping

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:89000 tAverage grade:4.3 %Reserve:115000 tAverage grade:8.1 %Resource:- tAverage grade:- %

Zn Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:44000 tAverage grade:2.2 %Reserve:45000 tAverage grade:3.2 %Resource:- tAverage grade:- %

Ag Silver (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production:109 tAverage grade:53 g/tReserve:170 tAverage grade:120 g/tResource:- tAverage grade:- g/t

Environment

High acid generation potential due to the sulfidic composition of the primary ore (highly reactive sulfides) and the hydrothermal alteration type that increases the acid generation capacity of the orebody. Release of dissolved base metals (Pb, Zn,..) into the environment as well as As that can accumulate in the stream sediments.

The ore processing plant located in Lepocavic has generated large amounts of tailings (8 Mt).

Comments

In 1981, the Crnac mine produced 60,000 t @ 7% Pb and 2% Zn, by sub-level open stoping. Output should reach 150,000 t/y by 1983.

ITT/UNMIK Mission (12/2000) : Past production (1967-2000) : 2,060,000 t @ 4.3% Pb, 2.2% Zn and 53 g/t Ag. Resources : 1,415,000 t @ 8.1% Pb, 3.2% Zn and 120 g/t Ag.

Geological references

Barral J.P. - (2001) - Réhabilitation du combinat de Trepca au Kosovo - Revue de la Société de l'Industrie Minérale, IM Environnement, N°12, Avril 2001, pp. 6-10.

Jankovic S. - (1978) - Izotopni sastav olova u pojedinim tertsijarnim olovo-tsinkovim rudishtima Srpsko-makedonske metalogenetske provintsije Translated Title: The isotopic composition of lead in some Tertiary lead-zinc deposits within the Serbo-Macedonian metallogenic province - Geoloshki Anali Balkanskoga Poluostrva, 42, p. 507-525.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Miletic G. - (1995) - The structure of lead and zinc deposit Crnac. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Nikolic D, Cvetkovic L, and Duric S. - (1978) - Sfalerit iz Pb - Zn leziste Crnac Translated Title: Sphalerite from the Crnac Pb-Zn mine. - IX Kongres Geologa Jugoslavije. Sarajevo, Yugoslavia. 1978. p. 409-415.

Novovic T. - (1979) - Marusic Pb-Zn pojava na Kopaoniku Translated Title: Marusic Pb- Zn occurrence at Kopaonik. - Glasnik Prirodnjackog Muzeja u Beogradu, Serija A: Mineralogija, Geologija, Paleontologija, 34, p. 59-64.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Crni Vrh

General data

Deposit name(s): Crni Vrh Identifier: YUG-00064

Commodities: Sb 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 21.094 Latitude: 44.009 District: Pomoravski

Geology

Ore deposit type (gitology)

Vein and disseminated Sb deposits: Sb, Hg, As, (Au, Tl)

Ore deposit shape

Concordant to subconcordant stockwork (veinlets network) envelope

Mineralization Age: Cenozoic

 Ore mineralogy
 Host rock mineralogy
 Hydrothermal alteration

 Stibnite
 Quartz
 Silicification

Host rocks Age:

Hostrock formation names Host rock lithology

Silicified marble Undifferentiated metamorphic rock
Crystalline schists Marble, cipolin (crystalline limestone)

Economy

Exploitation type

Mining method unkown

Antimony (metal)

antimony (metai)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Sb

Comments

Geological references

Herrington R.J., Jankovic S. and Kozelj D. - (1998) - The Bor and Majdanpek copper-gold deposits in the context of the Bor Metallogenic Zone (Serbia, Yougoslavia) - MDSG 98 Programme at St Andrews Scotland 13th-15th December 1998, 10 p. Jankovic S. - (1979) - Antimony deposits in south-eastern Europe. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 37, p. 25-48.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Other references

Other data bases

Deli Jovan

General data

Deposit name(s): Deli Jovan Identifier: YUG-00175

Rusman

Commodities: Au 0 t Class N/A Status: Old mine workings

Company:

Longitude: 22.281 Latitude: 44.124 District: Zajecarski

Geology

Ore deposit type (gitology)

Fault-related syn- to late-orogenic ore deposits : Au, Zn, As, Sb, Cu, Ni, Co

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Mineralization Age: Paleozoic (Primary)

Ore mineralogy Host rock mineralogy

Pyrite Quartz

Gold Galena Chalcopyrite

Host rocks Age:

Host rock lithology

Undifferentiated metamorphic rock Foid-bearing gabbro, foid gabbro

Economy

Exploitation type

Underground mining

Au Gold (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:

Reserve:

- t

Average grade:

Average grade:

- t

Resource: - t Average grade:

Environment

Potential Acid Rock Drainage due to the sulfides minerals.

Expected dissolved metals in the drainage water.

No information regarding the gold processing and the reagents used (CN, Hg?).

Comments

Quartz veins are 0.1 to 2-33 m wide, length up to 200 m, vertical extent does not exceed 150 m.

Gindusa deposit : 50-80 g/t Au, St Ana at Rusman : 15 g/t Au

Geological references

Jancovic S, Milovanovic D, Jelenkovic R, and Hrkovic K. - (1992) - Gold Deposits and Occurences in Serbia: Types, Metallogenic Units and Outlook. - Chair of Economic geology, Faculty of Mining and Geology, University of Belgrade, Belgrade. 285 p.

Economic references

Deva

General data

Deposit name(s): Deva Identifier: YUG-00029

Commodities: Cr 132 000 t Class E Status: Old industrial mine, exhausted deposit

Company: Deva - Ro Rudnik Hroma

Longitude: 20.335 Latitude: 42.330 District: Kosovo

Geology

Ore deposit type (gitology)

Chromitite deposits in layered basic-ultrabasic complexes: Cr

Ore deposit shape

Stratabound envelope of disseminated ore

Mineralization Age:

Ore mineralogy
Chromite

Host rocks Age:

Hostrock formation names

Djakovo serpentine massif

Djakovo serpentine massif

Host rock lithology

Serpentinite

Harzburgite

Dunite

Economy

Exploitation type

Mining method unkown

Cr Chrome (Cr2O3)

Ore type: Primary oxide ore (ilmenite, wolframite, pitchblende, chromite, pyrochlore, etc.)

Past production:132000 tAverage grade:44 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Environment

No specific environmental signature is known with this type of ore deposit.

Comments

In 1982, mining has currently been suspended due to the low grade of the deposit. In 1978, its reserves were estimated at 300,000 t @ 44% Cr2O3.

Geological references

Jankovic S. - (1967) - Metalogenetske epohe i rudonosna podrucja jugoslavije. - Beograd, 1967.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Silk MH. - (1988) - World Chromite resources and ferrochromium production. - MINTEK - Special Publication. Council for Mineral Technology, 149 p.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Other references

Other data bases

Djavolja Varos

General data

Deposit name(s): Djavolja Varos Identifier: YUG-00118

Commodities: Au 0 t Class N/A Status: Deposit or prospect of unknown status

 Cu
 0 t
 Class
 N/A

 PbZn
 0 t
 Class
 N/A

Company:

Longitude: 21.425 Latitude: 43.034 District: Topolicki

Geology

Ore deposit type (gitology)

Low-sulphidation (adularia - sericite) epithermal deposits: Au, Ag, Pb, Zn, Cu, Sb, (Hg, As, Mn, Tl)

Porphyry Cu-Au deposits: Cu, Au, (Ag, Bi, Te)

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Neogene (Miocene to Pliocene)

Ore mineralogyHost rock mineralogyHydrothermal alterationPyriteQuartzSilicificationGalenaPyritizationSphaleriteArgillic alterationChalcopyrite

Tetrahedrite
Cerussite
Azurite
Malachite
Covellite
Goethite

Host rocks Age: Neogene (Miocene to Pliocene)

Hostrock formation names

Djavolja Varos Caldera

Host rock lithology
Andesite

Lece Volcanogenic Complex Pyroclastic rocks s.l.

Economy

Exploitation type

Unworked

Au Gold (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Cu Copper (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

PbZn Lead + Zinc (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

YUG-00118

Environment

High acid generation potential due to the sulfidic composition of the primary ore.

The hydrothermal alteration types (silica, argillic and pyritisation) tends to increase the acid-generating capacity of the host-rocks.

Moreover, the presence of sulfosalts (like tetrahedrite) tends to release, when oxydized, elements like As into the environment.

Comments

Geological references

Jankovic S and Jelenkovic R. - (1995) - Gold mineralization in Yugoslavia; metallogenic environments and associations of minerals. - Studia Universitatis Babes Bolyai, Geologia. 40, (1), p. 85-102.

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S. - (1984) - Major metallogenic units and ore deposits in Yugoslavia. - Earth Science (Paris) = Sciences de la Terre (Paris), 17, p. 385-394.

Pesut D. - (1976) - Geology, tectonics and metallogeny of Lece Massif. - Rasprave Zavoda za Geoloska i Geofizicka Istrazivanja, 14, 59 p.

Popovic R. - (2000) - Distribution of base and precious metals in the Lece volcano-intrusive massif (Vardar Zone) - Proceedings of the International Symposium "Geology and Metallogeny of the Dinarides and the Vardar Zone". The Academy of Sciences and Arts of the Republic of Srpska. The Departement of Natural, Mathematical and Technical Sciences, Vol. 1, pp. 443-452

Economic references

Dobro Selo

General data

Deposit name(s): Dobro Selo Identifier: YUG-00034

Commodities: Coal 000 000 000 t Class B Status: Producing industrial mine

Company: Elektroprivreda Kosova

Longitude: 21.061 Latitude: 42.676 District: Kosovo

Geology

Ore deposit type (gitology)

Lignite deposits

Ore deposit shape

Host rocks

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Pliocene

Hostrock formation names Host rock lithology

Age: Pliocene

Kosovo Coal Basin Medium- to fine-grained detrital

sediment

Bituminous or carbureted rock: clay, claystone, sand, sandstone, limestone, dolomite, etc.

Economy

Exploitation type

Open cast (open pit) mining Bucket wheel dredging

Coal Coal, lignite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: 79500000 t Average grade: Reserve: - t Average grade: Resource: 5920500000 t Average grade: -

Environment

Acid rock drainage due to the presence of iron sulphur minerals.

Landforms instability created during mining operations and suspended matter in mine water discharge.

Trace metals content may exist (PGE, radionuclides ?).

Comments

In 1964, 2.2 Mt were mined. In 1970, Dobro Selo and Belacevac produced 3.9 Mt. In 1990, 6.2 Mt were mined from these 2 deposits of the North Kosovo Basin.

The Kosovo Basin (North and South) contains approximately 12 billion tons of Pliocene lignite. Kosovo coal is of the poorly consolidated lignite type. It has a 45% moisture content, of which 15% hydromoisture, an average of about 15% ash and 1% sulphur. Its heating value is about 8,000 kJ/kg.

Electric Power Industry of Serbia - Report 1998 :

The Kosovo-Metohija coal basin covers an area of about 250 km². The average coal layer thickness is 41 m and may reach 100 m. It contains 12 billion tons of lignite, only 2.65% has been excavated.

Geological references

Cveticanin R. - (1982) - Review of Yugoslav coal basins. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 46-67.

Nikolic P. and Dimitrijevic D. - (1990) - Ugalj Jugoslavije : Geologija i proizvodno razvojni potencijali lezista i rudnika uglja - Coal of Yugoslavia - Beograd : Pronalazastvo, 1990, 464 p.

Ruppert L, Finkelman R, Boti E, Milosavljevic M, Tewalt S, Simon N, and Dulong F. - (1996) - Origin and significance of high nickel and chromium concentrations in Pliocene lignite of the Kosovo Basin, Serbia. - International Journal of Coal Geology, 29, (4), p. 235-258.

YUG-00034

Economic references

Anonymous - (1998) - Electric Power Industry of Serbia - 1998 - EPS, Beograd 1998, 152 p.

Anonymous - (1999) - Electric Power Industry of Serbia - 1999 - EPS, Public Relations Center, Beograd, 56 p.

Anonymous. - (1982) - Jugoslavija za Rudarstvo. - 11th World Mining Congress, Beograd. 172 p.

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Salatic D. - (1999) - Mineral potential and its valorisation in yugoslavia - "VIII Balkan Mineral Processing Conference", 13-18 september 1999, Beograd, 9 p.

Donja Ljubata

General data

Deposit name(s): Donja Ljubata Identifier: YUG-00196

Commodities: Gr 200 000 t Class C Status: Deposit of unknown status

Company:

Longitude: 22.409 Latitude: 42.465 District: Pcinjski

Geology

Ore deposit type (gitology)

Industrial rocks and minerals related to metamorphic rocks: and alusite group, wollastonite, graphite, etc.

Ore deposit shape

Concordant to subconcordant envelope of disseminated ore

Mineralization Age:

Ore mineralogy
Graphite

Host rocks Age: Paleozoic (Primary)

Host rock lithology
Schist (s.l.), phyllite

Economy

Exploitation type

Unworked

Gr Graphite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:

Reserve:

Resource:

200000 t

Average grade:

Average grade:

Average grade:

Environment

Possible contamination of surface waters by suspended matter.

Comments

The graphite lenses contain 3-40% C, they are irregularly scattered within a zone 3 km long and 0.5 km wide (Jankovic - 1982)

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Donje Karacevo

General data

Deposit name(s): Donje Karacevo Identifier: YUG-00038

Commodities: Bnt 1 380 000 t Class C Status: Deposit of unknown status

Company:

Longitude: 21.717 Latitude: 42.567 District: Kosovo

Geology

Ore deposit type (gitology)

Sedimentary-related industrial rocks and minerals: Clays, limestones, dolomite, calcite, siliceous sand,

quartzite, etc.

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization

Age: Neogene (Miocene to Pliocene)

Ore mineralogy

Bentonite

Host rocks Age: Neogene (Miocene to Pliocene)

Host rock lithology

Clay, claystone

Volcaniclastic tuff s.l. (tuffaceous

sandstone)

Economy

Exploitation type

Mining method unkown

Bnt Bentonite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:180000 tAverage grade:-Reserve:1200000 tAverage grade:-Resource:-tAverage grade:

Environment

Contribution of surface water degradation with a high content in suspended solids (clay minerals).

Comments

The bentonite contains 60.3% SiO2 and 17.7% Al2O3.

The mine has been in operation since 1958 with an output between 5,000 and 10,000 t/y.

In 1982, the reserves of bentonite were 1.2 Mt

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Panicj B. - (1980) - Bentonitsko lezhishte Donje Karachevo (Kosovska Kamenitsa) Translated Title: The Donje Karacevo bentonite deposit near Kamenica Kosovska. - Zapisnici Srpsko Geolosko Drustvo, 1979, p. 165-174.

Vakanjac B. - (1982) - Geology of deposits of non-metallic minerals and mineral construction materials. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 95-111.

Economic references

Donje Nevlje

General data

Deposit name(s): Donje Nevlje Identifier: YUG-00084

Borovo

Commodities: Cu 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 22.752 Latitude: 42.957 District: Pirotski

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives Replacement deposits (skarns, mantos): Au, Cu, Pb, Zn, Ag, W, Mo, Sn, Fe

Ore deposit shape

Stratabound envelope of disseminated ore

*Mineralization Age: Upper/Late Cretaceous

Ore mineralogyHost rock mineralogyHydrothermal alterationPyriteGarnetSkarn formation

Chalcopyrite Vesuvianite
Magnetite Epidote
Sphalerite Chlorite

Host rocks Age: Upper/Late Cretaceous

Host rock lithology

Andesite

Pyroclastic rocks s.l.

Limestone

Economy

Exploitation type
Unworked

Cu Copper (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Acid generation potential with respect to sulfides minerals.

Comments

Content of Cu less than 0.15%

Geological references

Economic references

Other references

Other data bases

Draglica

General data

Deposit name(s): Draglica Identifier: YUG-00170

Commodities: Mg 0 t Class N/A Status: Old industrial mine, exhausted deposit

Company:

Longitude: 19.721 Latitude: 43.585 District: Zlatiborski

Geology

Ore deposit type (gitology)

Asbestos, talc or magnesite deposits hosted by basic and ultrabasic rocks

Supergene ore deposits

Ore deposit shape

Discordant lode or vein (thickness > 50 cm), in clusters or isolated

Mineralization Age:

Ore mineralogy

Magnesite (Giobertite)

Host rocks Age:

Hostrock formation names

Zlatibor Ultramafic Massif

Serpentinite

Basic to ultrabasic rock s.l.

Economy

Exploitation type
Unworked

Mg Magnesium, magnesite (MgCO3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Potential contamination of drainage waters by suspended matter.

Comments

Geological references

Fallick AE, Ilich M, and Russell MJ. - (1991) - A stable isotope study of the magnesite deposits associated with the alpine-type ultramafic rocks of Yugoslavia. - Economic Geology and the Bulletin of the Society of Economic Geologists, 86, (4), p. 847-861.

Petrov VP, Vakanjac B, Joksimovic D, Zekic M, and Lapcevic I. - (1980) - Magnesite deposits of Serbia and their origin. - International Geology Review, 22, (5), p. 497-510.

Vakanjac B and Ilich M. - (1980) - Non-metallics in the ultramafites of the ophiolite complex of Yugoslavia. - Ophiolites; International ophiolite symposium. Nicosia, Cyprus. April 1-8, 1979. p. 722-726.

Economic references

Draznja

General data

Deposit name(s): Draznja Identifier: YUG-00190

Commodities: Pb 115 730 t Class B Status: Dormant deposit

 Zn
 203 476 t
 Class B

 Ag
 213 t
 Class D

 Au
 0 t
 Class N/A

Company:

Longitude: 21.317 Latitude: 42.845 District: Kosovo

Geology

Ore deposit type (gitology)

Low-sulphidation epi- to mesothermal polymetallic-Ag veins: Pb, Zn, Ag, Mn, Cu, (As, Sb)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Tertiary

Ore mineralogyHost rock mineralogyHydrothermal alterationPyriteCarbonatesSilicification

Galena Rhodochrosite (Dialoqite) Carbonatization

Sphalerite Silica

Psilomelane Pyrolusite (Polianite) Iron Oxydes(unspecified)

Host rocks Age:

Hostrock formation names Host rock lithology

Veles Series Marble, cipolin (crystalline limestone)

Serpentinite

Flysch and fine- to medium-grained volcaniclastic (volcano-sedimentary)

turbidite Andesite Listwaenite

Economy

Exploitation type

Unworked

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:115730 tAverage grade:2.44 %Resource:-tAverage grade:-%

Zn Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:203476 tAverage grade:4.29 %Resource:-tAverage grade:-%

q/t

Ag Silver (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or refractory elem

Past production: Average grade: g/t Reserve: 213 t Average grade: 45 g/t

Resource: - t Average grade:

Au Gold (metal)

Ore type: Ore of indeterminate nature

Past production: Average grade: Reserve: Average grade: Resource: Average grade:

Environment

Acid generation potential due to the sulfides minerals.

This Acid Rock Drainage may be reduced by acid-consuming minerals contained in the gangue as well as in the host rocks. Expected dissolved contents of Pb, Zn and Mn in the drainage waters.

Comments

2 orebodies:

Orebody 1, vein-lenticular, 125 m long and 15 m thick of massive ore with Mn-Fe carbonates grading around 7% PbZn. Orebody 2, with irregular horseshoe shape, indicated reserves are 4,743,027 t @ 2.44% Pb, 4.29% Zn, 45 g/t Ag and with a low gold content, max 0.14 g/t.

Geological references

Barjaktarevic D. - (1995) - Polymetallic mineral phenomenon of Glama silver near by Gnjilane. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Popovic R. - (2000) - Distribution of base and precious metals in the Lece volcano-intrusive massif (Vardar Zone) - Proceedings of the International Symposium "Geology and Metallogeny of the Dinarides and the Vardar Zone". The Academy of Sciences and Arts of the Republic of Srpska. The Departement of Natural, Mathematical and Technical Sciences, Vol. 1, pp. 443-452

Simic M. - (2000) - Metallogeny of the Draznja-Propastica-Novo Brdo ore field in the Vardar Zone - Proceedings of the International Symposium "Geology and Metallogeny of the Dinarides and the Vardar Zone". The Academy of Sciences and Arts of the Republic of Srpska. The Departement of Natural, Mathematical and Technical Sciences, Vol. 1, pp. 409-424

Economic references

Drenovac

General data

Deposit name(s): Drenovac Identifier: YUG-00040

Commodities: Gran 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 20.659 Latitude: 42.438 District: Kosovo

Geology

Ore deposit type (gitology)

Slates, marble and ornamental-stone deposits

Ore deposit shape

Concordant to subconcordant mass, lens or pod of massive to submassive ore

Mineralization Age:
Host rocks Age:

Hostrock formation names Host rock lithology

Orahovac Ultrabasic Massif Spinel-, garnet-, or plagioclase-bearing

Iherzolite

Economy

Exploitation type
Unworked

Gran Granite, syenite, etc., ornamental (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

No specific environmental signature is known with this type of ore deposit.

Comments

Ornemental stone deposit (Lherzolite), explored by boring, shallow pits and trenches. Deposit of very high-quality.

Geological references

llic M. - (1975) - Leziste ukrasnog kamena kraj sela Drenovca (Orahovacki ultrabazitski masiv) Translated Title: Ornamental stone deposit near Drenovac village; Orahovac ultrabasic massif. - Zbornik Radova Rudarsko Geoloskog Fakulteta, Universitet u Beogradu, 18, p. 103-112.

Vakanjac B and Ilich M. - (1980) - Non-metallics in the ultramafites of the ophiolite complex of Yugoslavia. - Ophiolites; International ophiolite symposium. Nicosia, Cyprus. April 1-8, 1979. p. 722-726.

Economic references

Dubovac

General data

Deposit name(s): Dubovac Identifier: YUG-00085

Commodities: Mg 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 20.883 Latitude: 42.786 District: Kosovo

Geology

Ore deposit type (gitology)

Asbestos, talc or magnesite deposits hosted by basic and ultrabasic rocks

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age:

Ore mineralogy Host rock mineralogy

Magnesite (Giobertite) Dolomite

Quartz Chalcedony Calcite

Host rocks Age:

Hostrock formation names

Serpentinite massif of Dubovac

Host rock lithology
Serpentinite

Economy

Exploitation type
Unworked

Mg Magnesium, magnesite (MgCO3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Comments

Average grade: 45.02% MgO, 2.12% SiO2, 1.30% CaO

Geological references

Shkerlj J. - (1979) - Magnezitska lezhishta Dubovtsa Translated Title: Magnesite deposits of Dubovaca. - Geoloshki Anali Balkanskoga Poluostrva, 43-44, p. 333-358.

Vakanjac B and Ilich M. - (1980) - Non-metallics in the ultramafites of the ophiolite complex of Yugoslavia. - Ophiolites; International ophiolite symposium. Nicosia, Cyprus. April 1-8, 1979. p. 722-726.

Economic references

Other references

Other data bases

Dumitru Potok

General data

Deposit name(s): Dumitru Potok Identifier: YUG-00123

Valja Potok

Commodities: Cu 1 580 000 t Class B Status: Dormant deposit

Company: Rudarsko Topionicarski Basen BOR

Longitude: 21.931 Latitude: 44.201 District: Branicevski

Geology

Ore deposit type (gitology)

Porphyry copper deposits: Cu, (Mo, Se, Au, Ag)

Ore deposit shape

Discordant envelope of disseminated ore

Mineralization Age: Upper/Late Cretaceous

Ore mineralogyHydrothermal alterationChalcopyriteSilicificationPyriteArgillic alterationMagnetiteBiotitizationMolybdenite

Galena Sphalerite

Host rocks Age: Upper/Late Cretaceous

Hostrock formation names
Senonian andesite
Intrusive Complexe
Andesite
Quartz diorite
Pyroclastic rocks s.l.

Monzodiorite

Economy

Exploitation type
Unworked

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:1580000 tAverage grade:0.2 %

Environment

Extreme Acid Rock Drainage production due to the sulfidic composition of the primary ore, the widespread alteration halos and its mineral assemblage.

Release of Cu and others metals into the drainage water.

Comments

Low grade porphyry copper: 0.2 to 0.3% Cu

Resources Dumitri Potok : 291 Mt @ 0.2 % Cu and Valja Srtz : 485 Mt @ 0.2% Cu

Geological references

Jankovic S, Terzic M, Aleksic D, Karamata S, Spasov T, Jovanovic M, Milicic M, Miskovic V, Grubic A, and Antonijevic I. - (1980) - Metallogenic features of copper deposits in the volcano- intrusive complexes of the Bor District, Yugoslavia. - Special Publication of the Society for Geology Applied to Mineral Deposits, 1, p. 42-49.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S. - (1990) - Types of copper deposits related to volcanic environment in the Bor District, Yugoslavia. - Geol. Rundsch, 79, (2), p. 467-478.

Karamata S., Knezevic V., Pecskay Z. and Djordjevic M. - (1997) - Magmatism and metallogeny of the Ridanj-Krepoljin belt (eastern Serbia) and their correlation with northern and eastern analogues - Mineralium Deposita, 32, pp. 452-458

Economic references

Other references

Elemir

General data

Deposit name(s): Elemir Identifier: YUG-00233

Commodities: Petr 0 m3 Class N/A Status: Producing deposit

Company:

Longitude: 20.279 Latitude: 45.422 District:

Geology

Ore deposit type (gitology)

Oil deposits: oil, (S)

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:

Host rocks Age:

Economy

Exploitation type

Mining method unkown

Petr Petroleum (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-m3Average grade:-Reserve:-m3Average grade:-Resource:-m3Average grade:-

Environment

Potential contamination of surface waters, soils and sediments by hydrocarbons and oil products.

Comments

Geological references

Economic references

Fruska Gora

General data

Deposit name(s): Fruska Gora Identifier: YUG-00042

Commodities: PbZn 0 t Class N/A Status: Primary occurrence of unknown status

Company:

Longitude: 19.783 Latitude: 45.200 District: Vojvodina

Geology

Ore deposit type (gitology)

Unspecified ore deposit type

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:
Host rocks Age:

Economy

Exploitation type

Mining method unkown

PbZn Lead + Zinc (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

No specific environmental signature is known with this type of ore deposit.

Comments

Geological references

Economic references

Other references

Other data bases

Gamzigrad

General data

Deposit name(s): Gamzigrad Identifier: YUG-00108

Metovnica

Zajecar

Commodities: Fe 2 000 000 t Class D Status: Deposit of unknown status

Company:

Longitude: 22.167 Latitude: 43.900 District: Zajecarski

Geology

Ore deposit type (gitology)

Oolitic iron ore deposits (Clinton, Minette): Fe

Ore deposit shape

Stratabound bed (single or multi-layered)

Mineralization Age: Cenomanian

Ore mineralogy

Goethite Iron Oxydes(unspecified)

Host rocks Age: Cenomanian

Hostrock formation names Host rock lithology

Cenomanian Medium- to fine-grained detrital rock
Volcaniclastic rocks: pyroclastic rocks,
volcaniclastic (volcano-detrital,

volcano-sedimentary) rocks

Economy

Exploitation type

Mining method unkown

Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:-tAverage grade:-%Resource:2000000 tAverage grade:33.5%

Environment

Drainage water with suspended solids content enriched in Fe/Mn.

Comments

Several million tons of limonitic ore with 26-41% Fe, 0.75% P, 0.03% S, 15-24% SiO2, 6-9.5% Al2O3 and 15-17% CaO (Jankovic - 1982).

Geological references

Anonymous. - (1978) - The Iron Ore Deposits of Europe and adjacent Areas. - Explanatory Notes to the International Map of the Iron Ore Deposits of Europe, 1:2,500,000. Zitzmann A. Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover. 386 p. Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Other references

Other data bases

The Iron Ore Deposits of Europe - 1978 YU29

YUG-00108

Glama

General data

Deposit name(s): Glama Identifier: YUG-00213

Commodities: Ag 0 t Class N/A Status: Primary occurrence of unknown status

 Au
 0 t
 Class
 N/A

 PbZn
 0 t
 Class
 N/A

Company:

Longitude: 21.457 Latitude: 42.490 District: Kosovo

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Discordant mass or lens of massive to submassive ore

Mineralization Age:

Ore mineralogy

Iron Oxydes(unspecified)

Host rocks Age: Jurassic

Host rock lithology
Limestone
Ultrabasic rock

Economy

Exploitation type

Unworked

PbZn Lead + Zinc (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Ag Silver (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Au Gold (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Few data available.

Comments

Old workings, 6 chip-samples with gold content between 3.6 and 23.8 g/t.

Geological references

Barjaktarevic D. - (1995) - Polymetallic mineral phenomenon of Glama silver near by Gnjilane. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

YUG-00213

Economic references

Glavica

General data

Deposit name(s): Glavica Identifier: YUG-00026

Goles Ni

Commodities: Ni 99 750 t Class C Status: Old industrial mine, exhausted deposit

Co 0 t Class N/A

Company: Ferronikeli

Longitude: 20.982 Latitude: 42.556 District: Kosovo

Geology

Ore deposit type (gitology)

Laterite-related ore deposits: Fe, Mn, Ni-Co, Au, Pt, corundum, P, REE, Nb, etc.

Ore deposit shape

Cap, blanket, crust

Mineralization Age:

Ore mineralogy Host rock mineralogy

Saponite Opal Nontronite Quartz

Garnierite Goethite Goethite Psilomelane Wad

Host rocks Age:

Hostrock formation names Host rock lithology

Golesh Ultramafic Mass Basic to ultrabasic rock s.l.

Goles peridotite complex Peridotite
Harzburgite
Serpentinite

Economy

Exploitation type

Surface mining

Ni Nickel (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:99750 tAverage grade:1.33 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Co Cobalt (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or refractory elem

Past production:-tAverage grade:-%Reserve:-tAverage grade:0.07%Resource:-tAverage grade:-%

Environment

The main potential environmental problems are related to :

- the clay minerals assemblage existing in a lateritic context. Trough erosion of exposed mining areas, those assemblages generate high suspended solids content in surface water that can produce many impacts associated with surface waters, groundwater and terrestrial ecosystems;
- the disssolved metals (Ni, Co and Fe, Mn) that migrate from old mining operations to local ground and surface water.

YUG-00026

Comments

In 1982, Glavica and Cikatovo started in production for the Glogovac smelting plant. The combined reserves were estimated in 1978 to be 26.7 Mt averaging 1.2-1.5% Ni

The combined annual output was planned to be 983,000 t of dry ore containing 1.32% Ni and 0.07% Co.

Located in the Drenica Ore Field (Boev and Jankovic - 1996):

Ore reserves of probable and possible categories amounted to 7.5 Mt @ 1.33% Ni. Today ore reserves are depleted. Other occurrences are known in the Goles peridotite complex but they are not explored in detail (Medvetce, Mirjacici and Stankovac).

Geological references

Boev B. and Jankovic S. - (1996) - Nickel and nikeliferous iron deposits of the Vardar Zone (SE Europe) with particular reference to the Rzanovo-Studena Voda ore-bearing series - University "St. Kiril and Metodij" - Skopje. Faculty of Mining and Geology - Stip. Geological Department. Special Issue nº 3, 273 p.

Ilic M. - (1998) - Gem raw materials and their occurrence in Serbia - Juvelirske mineralne sirovine i njihova nalazista u Srbiji -Beograd, Univerzitet, Rudarsko-geoloski fakultet, 140 p.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S. - (1984) - Major metallogenic units and ore deposits in Yugoslavia. - Earth Science (Paris) = Sciences de la Terre (Paris), 17, p. 385-394.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-

Mitrovic M and Misirlic M. - (1978) - Prilog utvradivanju mineralnog sastava niklonosne rude iz Golesa i Cikatova, SAP Kosovo Translated Title: The determination of nickel-bearing ore mineral composition from Goles and Cikatovo; SAP Kosovo. - Rudarski Glasnik, 1, p. 31-46.

Petrov VP, Vakanjac B, Joksimovic D, Zekic M, and Lapcevic I. - (1980) - Magnesite deposits of Serbia and their origin. -International Geology Review, 22, (5), p. 497-510.

Ruppert L, Finkelman R, Boti E, Milosavljevic M, Tewalt S, Simon N, and Dulong F. - (1996) - Origin and significance of high nickel and chromium concentrations in Pliocene lignite of the Kosovo Basin, Serbia. - International Journal of Coal Geology, 29, (4), p. 235-258.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Salatic D. - (1999) - Mineral potential and its valorisation in yugoslavia - "VIII Balkan Mineral Processing Conference", 13-18 september 1999, Beograd, 9 p.

Other references

Other data bases

Golija

General data

Deposit name(s): Golija Identifier: YUG-00179

Jurija

Commodities: W 0 t Class N/A Status: Group of mineral occurrences

Company:

Longitude: 20.322 Latitude: 43.290 District: Moravicki

Geology

Ore deposit type (gitology)

Unspecified syn- to late orogenic ore deposits

W (scheelite) - Mo skarns: W, (Mo)

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age

Ore mineralogy Host rock mineralogy

Pyrrhotite Quartz

Scheelite Arsenopyrite Pyrite Sphalerite Galena

Host rocks Age:

Economy

Exploitation type
Unworked

W Wolfram (WO3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:-tAverage grade:0.4%Resource:-tAverage grade:-%

Environment

High acid generation potential due to the sulfides minerals contained in the ore.

Dissolved base metals and As may be released into the environment with some expected concentrations in the stream sediments

Comments

Geological references

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Gorance

General data

Deposit name(s): Gorance Identifier: YUG-00033

Commodities: Cr 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 21.239 Latitude: 42.120 District: Kosovo

Geology

Ore deposit type (gitology)

Podiform chromite deposits: Cr

Ore deposit shape

Pod, pod-shaped body

Stratabound envelope of disseminated ore

Mineralization Age:

Ore mineralogy
Chromite

Host rocks Age:

Hostrock formation names Host rock lithology

Lyuboten ultramafic Massif Basic to ultrabasic rock s.l.

Dunite Harzburgite

Economy

Exploitation type

Mining method unkown

Cr Chrome (Cr2O3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

No specific environmental signature.

Comments

Border Macedonia and Serbia, must be in Macedonia. Check the coordinates

Geological references

Holub M. - (1976) - Some regularities of the distribution of chromite deposits in the Lyuboten Massif, UR Macedonia, Yugoslavia. - Acta Universitatis Carolinae, Geologica. 1976, (2), p. 91-103.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Silk MH. - (1988) - World Chromite resources and ferrochromium production. - MINTEK - Special Publication. Council for Mineral Technology, 149 p.

Economic references

Goveda Glava

General data

Deposit name(s): Goveda Glava Identifier: YUG-00131

Commodities: Cu 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 19.771 Latitude: 44.126 District:

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to basic-ultrabasic magmatic rocks

Volcanogenic massive and disseminated Cu-Au sulphide deposits: Cu, Au, (Zn, Co, Mo, Bi)

Ore deposit shape

Atypical, unspecified or ill-defined form

Age:

Mineralization

Ore mineralogy

Pyrite

Host rocks Age:

Economy

Exploitation type

Mining method unkown

Copper (metal)

Ore type: Ore of indeterminate nature

Past production: - t Average grade: -

Reserve: - t Average grade: - Resource: - t Average grade: -

Environment

Too few data available.

Cu

Comments

Geological references

Jankovic S and Putnik S. - (1980) - Copper deposits in the Southeastern Europe connected with the ophiolite complexes. - European Copper Deposits. Jankovic S and Sillitoe RH (Eds), UNESCO - IGCP Projects, Belgrade. p. 117-123.

Putnik S. - (1981) - Metalogenia bakra jurske dijabaz-roznacke formacije - Metallogenesis of copper in jurassic diabase-chert formation - Geoinstitut. Beograd, 1981. Monographs, vol. 6, 117 p., 2 plates.

Economic references

Grebnik

General data

Deposit name(s): Grebnik Identifier: YUG-00028

Commodities: Al 2 000 000 t Class D Status: Old industrial mine, exhausted deposit

Company: Ro Rudnik Boksita Kosovo - Klina

Longitude: 20.601 Latitude: 42.557 District: Kosovo

Geology

Ore deposit type (gitology)

Bauxite and Al-rich rocks deposits (karst, laterite and Tikhvinsk types): Al, (Fe, Ga)

Ore deposit shape

Subconcordant or stratabound mass or lens of massive to submassive ore

Mineralization Age: Upper/Late Cretaceous

Ore mineralogy
Diaspore

Host rocks Age: Upper/Late Cretaceous

Host rock lithology
Limestone

Economy

Exploitation type

Surface mining

Al Aluminium (Bauxite ore)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:2000000 tAverage grade:47 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Environment

Existence of a clay minerals assemblage belonging to a lateritic profile.

Trough erosion of exposed mining areas, those assemblages generate high suspended solids content in surface water that can produce many impacts associated with surface waters, groundwater and terrestrial ecosystems.

Comments

Mined since 1966, reached a maximum production level of 200,000 t/y. In 1982, depleted reserves and falling grades reduced this level to about 80,000 t/y.

Other name Klina.

Geological references

Maksimovic Z. - (1976) - Genesis of some Mediterranean karstic bauxite deposits. - Comite International pour l'Etude des Bauxites, des Oxydes et des Hydroxydes d'Aluminium, Travaux (Academie Yougoslave des Sciences et des Arts), Zagreb.. 13, p. 1-14.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Other references

Other data bases

Guberevac

General data

Deposit name(s): Guberevac Identifier: YUG-00099

Commodities: Fe 250 000 t Class E Status: Deposit or prospect of unknown status

Company:

Longitude: 20.766 Latitude: 43.835 District: Sumadijski

Geology

Ore deposit type (gitology)

Laterite-related ore deposits: Fe, Mn, Ni-Co, Au, Pt, corundum, P, REE, Nb, etc.

Oolitic iron ore deposits (Clinton, Minette): Fe

Ore deposit shape

Cap, blanket, crust

Stratabound envelope of disseminated ore

Mineralization Age: Lower/Early Cretaceous

Ore mineralogy
Chamosite
Hematite
Goethite

Host rocks Age: Lower/Early Cretaceous

Hostrock formation names
Gault sediments
Host rock lithology
Conglomerate
Sandstone

Economy

Exploitation type

Mining method unkown

Fe

Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:250000 tAverage grade:36.5 %

Environment

Potential particulate and colloidal iron compounds in drainage water.

Comments

The ore contains 35-37% Fe, 1.3-2% Cr, 0.5-1.5% Ni, 15-25% SiO2, 1.5% Mn.

Geological references

Anonymous. - (1978) - The Iron Ore Deposits of Europe and adjacent Areas. - Explanatory Notes to the International Map of the Iron Ore Deposits of Europe, 1:2,500,000. Zitzmann A. Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover. 386 p. Jankovic S. - (1977) - The iron ore deposits in Yugoslavia. - The iron ore deposits of Europe and adjacent areas; explanatory notes to the International map of the iron ore deposits of Europe, 12,500,000; Volume I, Text and figures. Zitzmann A (Ed), Bundesanst,

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Geowiss. p. 411-418.

Other references

Other data bases

The Iron Ore Deposits of Europe - 1978 YU05

YUG-00099

Ibarski Rudnici

General data

Deposit name(s): Ibarski Rudnici Identifier: YUG-00139

Jarando

Commodities: Coal 0 t Class N/A Status: Producing small-scale mine

Company: Rudnik kamenog uglja IBARSKI RUDNICI - EPS

Longitude: 20.635 Latitude: 43.396 District: Raski

Geology

Ore deposit type (gitology)

Coal deposits

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Miocene

Host rocks Age: Miocene

Hostrock formation names Host rock lithology

Ibar Tertiary coal basin Coal (anthracite, graphite)

Detrital rock s.l.

Economy

Exploitation type

Underground mining

Coal Coal, lignite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:

Reserve:

Resource:

- t

Average grade:

Average grade:

Average grade:

Environment

Potential acid rock drainage with respect of the sulfides content.

Suspended matter in mine water discharge.

Landform instability (collapses) created during and after mining operations.

Comments

In 1981, output of 250,000 t/y.

Coal mined in the Ibar basin is considerably metamorphosed by contact-thermal changes of andesite effusions.

The average sulphur content is 5 to 6% and the heating value is about 26,000 kJ/kg.

Geological references

Cveticanin R. - (1982) - Review of Yugoslav coal basins. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 46-67. Tsvetichanin R. - (1976) - Petrography of coals in Yugoslav deposits of various ages. - Lithology and Mineral Resources, 11, (1), p. 120-126.

Economic references

Anonymous - (1998) - Electric Power Industry of Serbia - 1998 - EPS, Beograd 1998, 152 p.

Anonymous - (1999) - Electric Power Industry of Serbia - 1999 - EPS, Public Relations Center, Beograd, 56 p.

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Iverak

General data

Deposit name(s): Iverak Identifier: YUG-00043

Commodities: Sn t Class N/A Status: Deposit of unknown status

U 0 t Class N/A

Company:

Longitude: 19.456 Latitude: 44.586 District: Macvanski

Geology

Ore deposit type (gitology)

Alluvial-eluvial placers: Au, Pt, Sn,Ti, REE, diamond, gemstones, (Zr, etc.)

Sedimentary uranium deposits: U, (V, Mo, Ni, Cu, Zn, Pb, As)

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:

Ore mineralogy

Cassiterite

Columbo-tantalite

Host rocks Age: Cenozoic

Hostrock formation names

Tertiary clastic sediments

Detrital rock s.l.

Alluvium s.l.

Economy

Exploitation type

Unworked

U Uranium (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Sn Tin (metal)

Environment

Modification of waterbeds by alluvial extraction.

Degradation of the surface water quality by suspended matters and high turbidity.

Comments

Deposit of Sn but also U deposit in some reports.

Geological references

Anonymous. - (1980) - World Uranium - Geology and Resource Potential. - IUREP. Miller Freeman Publications, San Francisco. 524 p.

Jelenkovic R., Serafimovski T. and Lazarov P. - (1997) - Uranium Mineralization in the Serbo-Macedonian Massif and the Vardar Zone: Types and Distribution Pattern - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 149-157

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe

26-041

Jaram

General data

Deposit name(s): Jaram Identifier: YUG-00156

Duboka

Commodities: Wol 0 t Class N/A Status: Dormant deposit

Company:

Longitude: 20.830 Latitude: 43.282 District: Rasinski

Geology

Ore deposit type (gitology)

Industrial rocks and minerals related to metamorphic rocks: andalusite group, wollastonite, graphite, etc.

Ore deposit shape

Discordant mass or lens of massive to submassive ore

Mineralization Age:

Ore mineralogyHost rock mineralogyHydrothermal alterationWollastoniteVesuvianiteSkarn formation

Quartz
Calcite
Epidote
Garnet
Diopside
Magnetite

Host rocks Age:

Hostrock formation names Host rock lithology

Kopaonik granodioritic massif Undifferentiated metamorphic rock

Granodiorite

Economy

Exploitation type
Unworked

Wol Wollastonite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:-tAverage grade:67.5%Resource:-tAverage grade:-%

Environment

No specific environmental signature.

Comments

The ore contains 60-75% of wollastonite, 2-16% of carbonates and 4-12% of quartz. Technological tests have produced satisfactory market-grade wollastonite concentrations. The ore contains 48-52% SiO2, 0.5-0.7% Fe2O3, 39.5-43.4% CaO and 0.9-2.8% CO2

Geological references

Dedic L., Mozina A., Radulovic P., Joksimovic D. and Jovovic M. - (1995) - Non metalic sources deposit of the Kopaonik area. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Vakanjac B. - (1982) - Geology of deposits of non-metallic minerals and mineral construction materials. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 95-111.

Economic references

Other references

Jastrebac

General data

Deposit name(s): Jastrebac Identifier: YUG-00165

Commodities: Au 0 t Class N/A Status: Primary occurrence of unknown status

Company:

Longitude: 21.433 Latitude: 43.400 District: Topolicki

Geology

Ore deposit type (gitology)

Unspecified syn- to late orogenic ore deposits

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Mineralization Age:
Host rocks Age:

Host rock lithology

Undifferentiated metamorphic rock

Economy

Exploitation type
Unworked

Au Gold (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

No data available.

Comments

Geological references

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Vujanovic V and Teofilovic M. - (1977) - Zlatonosno podrucje regiona Prokuplja Translated Title: The gold- bearing Prokuplje area. - Glasnik Prirodnjackog Muzeja u Beogradu, Serija A: Mineralogija, Geologija, Paleontologija, 32, p. 27-30.

Economic references

Jovac 1

General data

Deposit name(s): Jovac 1 Identifier: YUG-00065

Commodities: Mica 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 21.311 Latitude: 43.892 District: Pomoravski

Geology

Ore deposit type (gitology)

Industrial rocks and minerals related to sedimentary or metamorphic rocks

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:
Host rocks Age:

Economy

Exploitation type

Mining method unkown

Mica Mica, sheet (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

The exposed waste rocks to water runoff may be the source of environmental problems due to the high content of suspended matter in surface water.

Comments

Geological references

Economic references

Other references

Other data bases

Jovac 2

General data

Deposit name(s): Jovac 2 Identifier: YUG-00066

Commodities: Cu 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 21.683 Latitude: 43.750 District:

Geology

Ore deposit type (gitology)

Unspecified ore deposit type

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:
Host rocks Age:

Economy

Exploitation type

Mining method unkown

Cu Copper (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Comments

Geological references

Economic references

Other references

Other data bases

Kalna

General data

Deposit name(s): Kalna Identifier: YUG-00096

Commodities: U 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 22.526 Latitude: 43.424 District: Zajecarski

Geology

Ore deposit type (gitology)

Shear-zone related mesothermal uranium deposits: U, (Fe, Cu, Pb, Zn, Se)

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Mineralization Age:

 Ore mineralogy
 Host rock mineralogy
 Hydrothermal alteration

 Uraninite
 Niter
 Sericitization

Uraninite Niter Sericitization

Pyrite Quartz Chloritization

Galena Chalcedony Argillic alteration

Chalcopyrite Barite
Pyrrhotite Strontianite

Arsenopyrite

Host rocks Age:

Hostrock formation names

Janja granite

Host rock lithology
Granite (s.l.)

Economy

Exploitation type

Underground mining

U Uranium (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Acid generating potential due to the sulfide minerals composition of the ore.

Radioactive elements (U, Th..) in drainage waters and potential emission of Radon and gamma radiations. Presence of arsenopyrite that can release As into the environment and in particular into the stream sediments.

Comments

First Uranium mine of Yugoslavia, in experimental operation until 1961

Geological references

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Other references

Other data bases

YUG-00096

Kaltrina

General data

Deposit name(s): Kaltrina Identifier: YUG-00185

Plavica

Commodities: Pb 57 376 t Class C Status: Unexploited deposit

Zn 63 000 t *Class* C Ag 181 t *Class* D

Company: TREPCA Mining and Metallurgical Complex

Longitude: 21.442 Latitude: 42.608 District: Kosovo

Geology

Ore deposit type (gitology)

Replacement deposits (skarns, mantos): Au, Cu, Pb, Zn, Ag, W, Mo, Sn, Fe

Ore deposit shape

Stratabound envelope of disseminated ore

Mineralization Age: Tertiary

Ore mineralogyHydrothermal alterationGalenaSkarn formationSphalerite

Pyrite

Host rocks Age:

Host rock lithology

Marble, cipolin (crystalline limestone)

Schist (s.l.), phyllite

Economy

Exploitation type
Unworked

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:57376 tAverage grade:4.4 %Resource:-tAverage grade:-%

Zn Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:- tAverage grade:- %Reserve:63000 tAverage grade:4.5 %Resource:- tAverage grade:- %

Ag Silver (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production:- tAverage grade:- g/tReserve:181 tAverage grade:129 g/tResource:- tAverage grade:- g/t

Environment

High acid generation potential due to the sulfides minerals contained in the ore.

The Acid Rock Drainage may partly be reduced by acid-consuming minerals contained in the gangue mineralogy or in the host rocks, but in general calc-silicate skarn minerals show low neutralizing reactivity with acid waters.

YUG-00185

Comments

Reserves supported by 4 drill-holes and underground workings: 1,304,000 t @ 4.4% Pb, 4.5% Zn and 129 g/t Ag.

Geological references

Simic M. - (2000) - Metallogeny of the Draznja-Propastica-Novo Brdo ore field in the Vardar Zone - Proceedings of the International Symposium "Geology and Metallogeny of the Dinarides and the Vardar Zone". The Academy of Sciences and Arts of the Republic of Srpska. The Departement of Natural, Mathematical and Technical Sciences, Vol. 1, pp. 409-424

Economic references

Kaludjer

General data

Deposit name(s): Kaludjer Identifier: YUG-00189

Commodities: Pb 5 760 t Class D Status: Deposit of unknown status

Zn 11 200 t *Class* **D**

Company: TREPCA Mining and Metallurgical Complex

Longitude: 20.699 Latitude: 43.090 District: Kosovo

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Tertiary

Host rocks Age:

Hostrock formation namesHost rock lithologyThrust contact between
amphibolite/serpentiniteAmphibolite (s.l.)Serpentinite

Economy

Exploitation type

Surface mining

Pb Lead (metal)

Ore type: Ore of indeterminate nature

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:5760 tAverage grade:1.8 %

Zn Zinc (metal)

Ore type: Ore of indeterminate nature

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:11200 tAverage grade:3.5 %

Environment

No data available.

Comments

Geological references

Miletic G. - (1995) - The structure of lead and zinc deposit Crnac. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Economic references

Karacevo

General data

Deposit name(s): Karacevo Identifier: YUG-00036

Commodities: KIn 3 450 000 t Class C Status: Deposit of unknown status

Company: Rudnik Kaolina Karacevo

Longitude: 21.732 Latitude: 42.565 District: Kosovo

Geology

Ore deposit type (gitology)

Supergene industrial rock and mineral deposits: clays, kaolin, silica sand, etc.

Ore deposit shape

Tabular-shaped mass or lens

Mineralization Age: Cenozoic

Ore mineralogy Host rock mineralogy

Kaolinite Feldspar Illite Quartz

Halloysite Montmorillonite

Host rocks Age: Paleozoic (Primary)

Hostrock formation names

Late Hercynian granodiorite

Granodiorite

Granodiorite

Economy

Exploitation type

Surface mining

Kln Kaolin (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:250000 tAverage grade:-Reserve:3200000 tAverage grade:-Resource:- tAverage grade:-

Environment

High turbidity and suspended matter in surface water. Landforms instability created during mining operations.

Comments

Has been worked since 1965 with an output of 23,000 - 28,000 t/y of kaolin. In 1982, the mine output will reach 200,000 t/y ot raw material. In 1975, the reserves were estimated at 3.2 Mt.

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Maksimovic Z and Nikolic D. - (1978) - The primary kaolin deposits of Yugoslavia. - Schriftenreihe fuer Geologische Wissenschaften, 74, 11, p. 179-196.

Simic V. and Jovic V. - (1997) - Genetic types of kaolin and kaolinite clay deposits in Serbia - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 197-201

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Karadak

General data

Deposit name(s): Karadak Identifier: YUG-00215

Commodities: PbZn 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 20.691 Latitude: 43.248 District: Raski

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Stratabound envelope of disseminated ore

Mineralization Age: Cenozoic

Ore mineralogy Host rock mineralogy Hydrothermal alteration

Pyrite Quartz Kaolinization

Marcasite Carbonates
Sphalerite Clay

Galena
Arsenopyrite
Chalcopyrite
Bournonite
Tetrahedrite
Enargite
Boulangerite
Antimonite

Iron Oxydes(unspecified)

Cerussite Covellite

Host rocks Age:

Host rock lithology

Andesite

Pyroclastic rocks s.l.

Economy

Exploitation type
Unworked

PbZn Lead + Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: - t Average grade:

Reserve: - t Average grade: - Resource: - t Average grade: -

Environment

Potential Acid Rock Drainage production due to the sulfides and sulfosalts minerals present in the ore. Expected dissolved and particulate contents of base metals and As in the drainege waters. Presence of acid-consuming minerals in the gangue that could reduce the Acid Rock Drainage production. Possible contamination of surface water bu suspended matter.

Comments

Geological references

Radulovic B. - (1992) - Leziste cinka i olova karadak Translated Title: The Karadek zinc and lead deposit. - Radovi Geoinstitut, 27,

p. 169-180.

Radulovic B. and Savic R. - (1995) - Deposits and the potential of base and precious metals in the ore field Raska. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Economic references

Karamanica

General data

Deposit name(s): Karamanica Identifier: YUG-00202

Commodities: Pb 42 900 t Class C Status: Deposit of unknown status

Zn 57 350 t *Class* **C**

Company:

Longitude: 22.348 Latitude: 42.377 District: Pcinjski

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Oligocene (Middle Tertiary)

Host rocks Age: Oligocene (Middle Tertiary)

Host rock lithology

Undifferentiated metamorphic rock

Granite (s.l.) Gneiss (s.l.)

Economy

Exploitation type

Unworked

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:42900 tAverage grade:1.16 %Resource:-tAverage grade:-%

Zn Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:57350 tAverage grade:1.55 %Resource:-tAverage grade:-%

Environment

No data available on ore and gangue mineralogy as well as on wall rock alteration.

Comments

The Podvirovi mineralization is the richest one : 2.62% Pb, 2.72% Zn, 21 g/t Ag and 193 g/t Cd (Simic - 1997).

Reserves: 3.7 Mt @ 1.16% Pb, 1.55% Zn.

Geological references

Simic M. - (1997) - Geological-structural features of the Besna Kobila Zone in SE Serbia - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 185-195

Economic references

Other references

Katalenac

General data

Deposit name(s): Katalenac Identifier: YUG-00226

Commodities: Silc 0 t Class N/A Status: Producing industrial mine

Company:

Longitude: 22.009 Latitude: 42.562 District: Pcinjski

Geology

Ore deposit type (gitology)

Volcanic-hosted industrial rock and mineral deposits: bentonite, diatomite, kaolinite, pumice, opal, chalcedony, zeolite, vermiculite, perlite, etc.

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age: Neogene (Miocene to Pliocene)

Ore mineralogy
Zeolite

Host rocks Age: Neogene (Miocene to Pliocene)

Host rock lithology
Vitric tuff

Economy

Exploitation type

Silc Silica, silica sand (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Dust production and fallout (Si). Geomorphic modifications in the landscape (quarry).

Comments

Geological references

llich M. - (1991) - Yugoslavian cement. Raw materials and production - Industrial Minerals, november 1991, pp. 59-61

Economic references

Kiseli Potok

General data

Deposit name(s): Kiseli Potok Identifier: YUG-00186

Commodities: Pb 60 000 t Class C Status: Unexploited deposit

Zn 50 000 t *Class* C Ag 160 t *Class* D

Company: TREPCA Mining and Metallurgical Complex

Longitude: 21.427 Latitude: 42.608 District: Kosovo

Geology

Ore deposit type (gitology)

Replacement deposits (skarns, mantos): Au, Cu, Pb, Zn, Ag, W, Mo, Sn, Fe

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:
Host rocks Age:

Economy

Exploitation type

Unworked

Pb Lead (metal)

Ore type: Ore of indeterminate nature

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:60000 tAverage grade:3 %

Zn Zinc (metal)

Ore type: Ore of indeterminate nature

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:50000 tAverage grade:2.5 %

Ag Silver (metal)

Ore type: Ore of indeterminate nature

Past production:- tAverage grade:- g/tReserve:- tAverage grade:- g/tResource:160 tAverage grade:80 g/t

Environment

No data available.

Comments

Resources of 2 Mt @ 3.0% Pb, 2.5% Zn, 80 g/t Ag and 40% Fe2S.

Geological references

Simic M. - (2000) - Metallogeny of the Draznja-Propastica-Novo Brdo ore field in the Vardar Zone - Proceedings of the International Symposium "Geology and Metallogeny of the Dinarides and the Vardar Zone". The Academy of Sciences and Arts of the Republic of Srpska. The Departement of Natural, Mathematical and Technical Sciences, Vol. 1, pp. 409-424

Economic references

Kisnica

General data

Deposit name(s): Kisnica Identifier: YUG-00025

Commodities: Pb 396 000 t Class B Status: Dormant deposit

 Ag
 532 t
 Class C

 Zn
 122 000 t
 Class C

 Au
 0 t
 Class N/A

Company: TREPCA Mining and Metallurgical Complex

Longitude: 21.237 Latitude: 42.598 District: Kosovo

Geology

Ore deposit type (gitology)

Low-sulphidation epi- to mesothermal polymetallic-Ag veins: Pb, Zn, Ag, Mn, Cu, (As, Sb)

Ore deposit shape

Subconcordant or stratabound mass or lens of massive to submassive ore

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Field of discordant lodes (n*km2, n*ha)

Mineralization Age: Miocene

Ore mineralogy Host rock mineralogy

Sphalerite Siderite Galena Quartz

Pyrite Rhodochrosite (Dialoqite)

Pyrrhotite Barite Magnetite Chalcedony

Chalcopyrite
Cubanite
Valleriite
Stannite
Arsenopyrite
Grey copper
Gold
Bournonite
Loellingite
Stibnite
Pyrargyrite
Boulangerite
Covellite

Marcasite

Host rocks Age:

Hostrock formation names Host rock lithology

Contact serpentinite-Cretaceous flysh Serpentinite
Andesite

Schist/shale

Economy

Exploitation type

Surface mining
Underground mining
Lead (metal)

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:270000 tAverage grade:2.63 %Reserve:126000 tAverage grade:4.9 %Resource:- tAverage grade:- %

Au Gold (metal)

Ore type: Ore of indeterminate nature

Past production:

Reserve:

- t

Average grade:

- t

Average grade:

Resource: - t Average grade:

Ag Silver (metal)

Ore type: Ore of indeterminate nature

Past production:390 tAverage grade:38 g/tReserve:142 tAverage grade:55 g/tResource:- tAverage grade:- g/t

Zn Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:90000 tAverage grade:0.88 %Reserve:32000 tAverage grade:1.2 %Resource:- tAverage grade:- %

Environment

The primary ore mineralogy is mainly composed of sulfides (lead and zinc + iron sulfides) that may generate acid and dissolved metals during oxidation leading to the potential contamination of drainage water and sream sediments (Acid Mine Drainage).

Presence of arsenopyrite and Loellingite that can liberate As into the environment and lead to its accumulation in stream sediments downstream of the ore-deposits.

The existence of an ore processing plant at Gracanica has generated large tailings disposals (15-18Mt) that can be a source of groundwater and surface water contamination.

Comments

The lenses average 5% Pb and 1.5% Zn, the stockwork 2.4% Pb and 1.2% Zn.

ITT/UNMIK Mission (12/2000): Past production (1962-1998) by underground mine: 3,562,000 t @ 4.08% Pb, 1.02% Zn, 53 g/t Ag.

Past Production (1969-1992) by open pit: 6,721,000 t @ 1.85% Pb, 0.81% Zn and 30 g/t Ag.

Reserves of the underground mine : 2,581,000 t @ 4.9% Pb, 1.2% Zn and 55 g/t Ag.

Geological references

Barral J.P. - (2001) - Réhabilitation du combinat de Trepca au Kosovo - Revue de la Société de l'Industrie Minérale, IM Environnement, N°12, Avril 2001, pp. 6-10.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Klisic M. - (1995) - Deposits of lead and zinc in the ore field Ajvalija - Kisnica. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Schumacher F. - (1954) - The ore deposits of Jugoslavia and the development of its mining industry - Economic Geology, Vol 49, n° 5, pp. 451-492

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Other references

Other data bases

Carte Métallogénique de l'Europe 26-112

Kizevak

General data

Deposit name(s): Kizevak Identifier: YUG-00212

Commodities: Pb 48 000 t Class C Status: Producing industrial mine

Zn 106 800 t *Class* **C**

Company:

Longitude: 20.701 Latitude: 43.291 District: Raski

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Stratabound envelope of disseminated ore

Mineralization Age: Cenozoic

Ore mineralogy Hydrothermal alteration

Pyrite Kaolinization
Arsenopyrite Propylitization

Sphalerite
Galena
Boulangerite
Antimonite
Chalcopyrite
Marcasite

Host rocks Age:

Host rock lithology

Andesite

Pyroclastic rocks s.l.

Economy

Exploitation type

Surface mining

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:48000 tAverage grade:2.14 %Resource:-tAverage grade:-%

Zn Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:106800 tAverage grade:4.76 %Resource:-tAverage grade:-%

Environment

Acid generation potential due to the sulfides and sulfosalts minerals contained in the ore.

Expected high dissolved and particulate contents of Fe, Cu and As in drainage waters with possible concentrations in stream sediments.

No information related to mine waste deposits as well as to tailings which are potential sources of contaminants in the form of particulates and dissolved metals.

Comments

Reserves: 2,244 kt @ 2.14% Pb and 4.76% Zn

Geological references

Radulovic B and Grabeljskek V. - (1978) - Geoloski prikaz novopronadenih lezista olova i cinka Sastavci i Kizevak potok na Kopaoniku Translated Title: Report on exploration of new lead-zinc deposits at Sastavci and Kizevak, Kopaonik region. - Radovi Instituta za Geolosko Rudarska Istrazivanja i Ispitivanja Nuklearnih i Drugih Mineralnih Sirovina, 18, (12), p. 93-104.

Radulovic B. - (1992) - Leziste cinka i olova karadak Translated Title: The Karadek zinc and lead deposit. - Radovi Geoinstitut, 27, p. 169-180.

Radulovic B. and Savic R. - (1995) - Deposits and the potential of base and precious metals in the ore field Raska. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Economic references

Kolubara

General data

Deposit name(s): Kolubara Identifier: YUG-00141

Lazarevac

Commodities: Coal 815 947 000 t Class B Status: Producing industrial mine

Company: Rudnici lignita BASEN KOLUBARA - EPS

Longitude: 20.303 Latitude: 44.461 District: City of Beograd

Geology

Ore deposit type (gitology)

Lignite deposits

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: PontianHost rocks Age: Pontian

Hostrock formation names Host rock lithology

Kolubara Coal Basin Bituminous or carbureted rock: clay,

claystone, sand, sandstone, limestone, dolomite, etc. Medium- to fine-grained detrital

sediment

Economy

Exploitation type

Open cast (open pit) mining Bucket wheel dredging

Coal Coal, lignite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:615947000 tAverage grade:-Reserve:2200000000 tAverage grade:-Resource:-tAverage grade:

Environment

Potential acid rock drainage with respect of the sulfides content.

Suspended matter in mine water discharge.

Large geomorphic modifications of the landscape (pits, gullies, spoil heaps...) has taken place in this area since 1945. Landform instability (collapses) created during and after mining operations.

Comments

Opencast mining started in 1950. In 1981, current output was about 20,000,000 t/y from 3 openpits: Field B, Field D and Tamnava. In 1983, the resources were estimated at about 3,568 Mt.

Kolubara coal is of the lignite type. It contains about 47% of moisture and 12% of ash. The heating value is about 7,500 kJ/kg.

Electric Power Industry of Serbia - Report 1998 :

Kolubara cover an area of 600 km² and comprises 4 open-pits: Field B, Field D, Tamnava-East and Tamnava-West. The mining equipment installed at these 4 mines is capable of producing 27.5 Mt of coal and removing 49.5 Mm3 of overburden a year.

Electric Power Industry of Serbia - Report 1999 :

In 1999, open-pit mines "Kolubara" produced the amount of 22,683,000 t of coal.

The total production between 1945-2000 was 615.9 Mt of coal and 1,283 Mm3 of overburden (striping ratio of 2.08). The remaining lignite reserves amount 2,200 Mt.

Geological references

Cveticanin R. - (1982) - Review of Yugoslav coal basins. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 46-67.

Jankes G, Cvetkovic O, and Glumicic T. - (1997) - Determination of different forms of sulphur in Yugoslav soft brown coals. - European Coal Geology and Technology. Gayer R and Pesek J (Eds), Geological Society of London, London. p. 269-272.

Economic references

Anonymous - (1998) - Electric Power Industry of Serbia - 1998 - EPS, Beograd 1998, 152 p.

Anonymous - (1999) - Electric Power Industry of Serbia - 1999 - EPS, Public Relations Center, Beograd, 56 p.

Anonymous. - (1982) - Jugoslavija za Rudarstvo. - 11th World Mining Congress, Beograd. 172 p.

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Dimitrijevicj D. - (1983) - Kolubarski ugljeni basen i njegovi resursi u pogledu dobijanja produkata vecje toplotne vrednosti Translated Title: Kolubara coal basin and its resources from the aspect of increasing the thermal efficiency. - Geoloshki Anali Balkanskoga Poluostrva, 46, p. 333-351.

Dimitrijevicj D. - (1993) - Kolubarski ligniti u proizvodnji metalurshkog koksa Translated Title: Kolubara lignite in production of metallurgical coke. - Geoloshki Anali Balkanskoga Poluostrva, 57, (2), p. 357-367.

Mitrovic M. - (1981) - Mogucnosti ciscenja lignita kolubara pre sagorevanja u termoelektrani Translated Title: Possibilities of purifying the Kolubara lignite before combustion in energy-producing stations. - Rudarski Glasnik, 2, p. 34-44.

Koporic

General data

Deposit name(s): Koporic Identifier: YUG-00077

Commodities: Pb 50 000 t Class C Status: Old industrial mine, abandoned deposit

Zn 19 000 t *Class* D Ag 58 t *Class* E

Company: TREPCA Mining and Metallurgical Complex

Longitude: 20.858 Latitude: 43.144 District: Kosovo

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Neogene (Miocene to Pliocene)

Ore mineralogy Hydrothermal alteration

Galena Silicification

Sphalerite

Host rocks Age: Neogene (Miocene to Pliocene)

Hostrock formation names Host rock lithology

Serpentinite - Upper cretaceous flysch Dacite

Andesite Serpentinite

Economy

Exploitation type

Surface mining

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:50000 tAverage grade:2.2 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Zn Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:19000 tAverage grade:0.8 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Ag Silver (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production:58 tAverage grade:26 g/tReserve:- tAverage grade:- g/tResource:- tAverage grade:- g/t

Environment

Moderate production of Acid mine drainage with associated dissolved base metals in surface waters. The ore processing plant located in Lepocavic has generated large amounts of tailings (8 Mt).

Comments

In 1982, the Koporic openpit was the largest mine of Kapaonik Mining Company, with a current output of 160,000 t/y. The ore has always been low-grade, with 2% Pb and 1% Zn. The mineralized zone is a silica mass, presence of gold?

ITT/UNMIK Mission (12/2000): Past production (1972-1998): 2,269,000 t @ 2.2% Pb, 0.8% Zn and 26 g/t Ag.

Geological references

Barral J.P. - (2001) - Réhabilitation du combinat de Trepca au Kosovo - Revue de la Société de l'Industrie Minérale, IM Environnement, N°12, Avril 2001, pp. 6-10.

Jankovic N and Jankovic T. - (1976) - Strukturno-litoloske karakteristike lezista Koporic i njihov uticaj na proces orudnjenja Translated Title: The structural- lithologic characteristics of the Koporic Deposit and their influence on ore mineralization. - Jugoslovanski Geoloski Kongres, 8, (5), p. 79-86.

Jankovic S. - (1978) - Izotopni sastav olova u pojedinim tertsijarnim olovo-tsinkovim rudishtima Srpsko-makedonske metalogenetske provintsije Translated Title: The isotopic composition of lead in some Tertiary lead-zinc deposits within the Serbo-Macedonian metallogenic province - Geoloshki Anali Balkanskoga Poluostrva, 42, p. 507-525.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Strucl I. - (1981) - Die schichtgebundenen Blei-Zink-Lagerstaetten Jugoslawiens Translated Title: The stratiform lead-zinc deposits of Yugoslavia. - Mitteilungen der Oesterreichischen Geologischen Gesellschaft, 74-75, p. 307-322.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Other references

Other data bases

Carte Métallogénique de l'Europe

26-095

Korlace

General data

Deposit name(s): Korlace Identifier: YUG-00116

Commodities: Asb 0 t Class N/A Status: Producing industrial mine

Company: Jugoazbest Korlace

Longitude: 20.694 Latitude: 43.365 District: Raski

Geology

Ore deposit type (gitology)

Asbestos, talc or magnesite deposits hosted by basic and ultrabasic rocks

Ore deposit shape

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age.

 Ore mineralogy
 Hydrothermal alteration

 Chrysotile (Clino-, Ortho-, Par
 Carbonatization

 Silicification

Host rocks Age:

Hostrock formation names Host rock lithology

Kopaonik ultramafite mass Serpentinite

Spinel-, garnet-, or plagioclase-bearing lherzolite

Harzburgite

Economy

Exploitation type
Surface mining

Asb Asbestos (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:-tAverage grade:2.78%Resource:-tAverage grade:-%

Environment

Emission of particulate matters in the form of fugitive dust.

The dust mainly composed of fibrous minerals can be inhaled by people and thus may induce hillnesses.

Comments

By 1981, approximate output was 12,000 t/y of asbestos fibre.

Geological references

Dedic L., Mozina A., Radulovic P., Joksimovic D. and Jovovic M. - (1995) - Non metalic sources deposit of the Kopaonik area. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Vakanjac B and Ilich M. - (1980) - Non-metallics in the ultramafites of the ophiolite complex of Yugoslavia. - Ophiolites; International ophiolite symposium. Nicosia, Cyprus. April 1-8, 1979. p. 722-726.

Vakanjac B. - (1982) - Geology of deposits of non-metallic minerals and mineral construction materials. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 95-111.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Tanasijevic D. - (1981) - Dorpinos izboru obima proivodnje u rudniku azbesta korlace Translated Title: The choice of the rate of production for the Korlace asbestos mine. - Rudarski Glasnik, 2, p. 11-17.

Other references

Kosjeric

General data

Deposit name(s): Kosjeric Identifier: YUG-00224

Commodities: LstC 0 t Class N/A Status: Producing industrial mine

Company: D.P. Fabrika Cementa KOSJERIC

Longitude: 19.938 Latitude: 43.991 District: Zlatiborski

Geology

Ore deposit type (gitology)

Sedimentary-related industrial rocks and minerals: Clays, limestones, dolomite, calcite, siliceous sand,

quartzite, etc.

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age:

Host rocks Age: Upper/Late Cretaceous

Host rock lithology
Limestone
Marl

Economy

Exploitation type

Surface mining

LstC Cement limestone (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Dust production and fallout.

Geomorphic modifications in the landscape (quarry).

Comments

Production 1990 : 456 kt Annual production : 442 kt (1999)

Geological references

Ilich M. - (1991) - Yugoslavian cement. Raw materials and production - Industrial Minerals, november 1991, pp. 59-61

Economic references

Kosmaj Babe

General data

Deposit name(s): Kosmaj Babe Identifier: YUG-00049

Commodities: Pb 269 618 t Class B Status: Dormant deposit

Zn 136 500 t *Class* **C Cu** 19 500 t *Class* **D**

Company:

Longitude: 20.576 Latitude: 44.469 District: Beograd

Geology

Ore deposit type (gitology)

Pb-Zn-Ag skarns and stratiform mantos: Pb, Zn, Ag, (Au)

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:
Host rocks Age:

Economy

Exploitation type

Unworked

Pb Lead (metal)

Ore type: Ore of indeterminate nature

Past production:3118 tAverage grade:- %Reserve:- tAverage grade:- %Resource:266500 tAverage grade:4.1 %

Zn Zinc (metal)

Ore type: Ore of indeterminate nature

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:136500 tAverage grade:2.1 %

Cu Copper (metal)

Ore type: Ore of indeterminate nature

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:19500 tAverage grade:0.3 %

Environment

Comments

Old slags which produced 3118 t Pb.

Resources of 6.5 Mt @ 4.1% Pb, 2.1% Zn, 0.3% Cu with Ag, Cd and Bi.

Geological references

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202. Jankovic S. - (1984) - Major metallogenic units and ore deposits in Yugoslavia. - Earth Science (Paris) = Sciences de la Terre (Paris), 17, p. 385-394.

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe

26-049

Kostolac

General data

Deposit name(s): Kostolac Identifier: YUG-00142

Commodities: Coal 809 091 000 t Class C Status: Producing industrial mine

Company: Rudnici lignita BASEN KOSTOLAC - EPS

Longitude: 21.203 Latitude: 44.721 District: Branicevski

Geology

Ore deposit type (gitology)

Lignite deposits

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Pliocene

Host rocks Age: Pliocene

Hostrock formation names Host rock lithology

Kostolac Coal Basin Medium- to fine-grained detrital

sediment

Bituminous or carbureted rock: clay, claystone, sand, sandstone, limestone, dolomite, etc.

Economy

Exploitation type

Open cast (open pit) mining Bucket wheel dredging

Coal Coal, lignite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: 109091000 t Average grade: Reserve: 700000000 t Average grade: Resource: - t Average grade: -

Environment

Potential acid rock drainage with respect of the sulfides content.

Suspended matter in mine water discharge.

Large geomorphic modifications of the ladscape (pits, gullies, spoil heaps...) has been created since the beginning of the mining period.

Landform instability (collapses) created during and after mining operations may exist.

Comments

Coal reserves were explored and proved in the areas of Kostolac, Drmno, Klenovnik, Cirikovac and Poljana (100 km²)

Grade properties of the main coal seam are:

moisture 40 to 43%, ash 6.57 to 16.16%, sulphur 1.73 to 2.52%, combustibility 43 to 53, Gross heating value 11,600 to 14,000 kJ, Net heating value 10,000 to 12,300 kJ.

In 1981, output was about 3,200,000 t/y.

Opening of new operations was planned for a total output of 6,600,000 t/y

Electric Power Industry of Serbia - Report 1998 :

Kostolac comprises 3 open-pits: Klenovnik, Cirikovac and Drmno. The mining equipment installed at these 3 mines is capable of producing 9.2 Mt of coal and removing 30 Mm3 of overburden a year.

Electric Power Industry of Serbia - Report 1999 :

In 1999, open-pit mines "Kostolac" produced the amount of 5,734,032 t of coal.

The total production between 1945-2000 was 109.1 Mt of coal and 365 Mm3 of overburden (striping ratio of 3.35). The remaining lignite reserves amount 700 Mt.

Geological references

Cveticanin R. - (1982) - Review of Yugoslav coal basins. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 46-67. Jankes G, Cvetkovic O, and Glumicic T. - (1997) - Determination of different forms of sulphur in Yugoslav soft brown coals. - European Coal Geology and Technology. Gayer R and Pesek J (Eds), Geological Society of London, London. p. 269-272.

Economic references

Anonymous - (1998) - Electric Power Industry of Serbia - 1998 - EPS, Beograd 1998, 152 p.

Anonymous - (1999) - Electric Power Industry of Serbia - 1999 - EPS, Public Relations Center, Beograd, 56 p.

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Kotlenic

General data

Deposit name(s): Kotlenic Identifier: YUG-00162

Commodities: PbZn 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 20.773 Latitude: 43.783 District: Raski

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Discordant lode or vein (thickness > 50 cm), in clusters or isolated

Mineralization Age:
Host rocks Age:

Economy

Exploitation type

Mining method unkown

PbZn Lead + Zinc (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

No data available.

Comments

Geological references

Jankovic S. - (1978) - Izotopni sastav olova u pojedinim tertsijarnim olovo-tsinkovim rudishtima Srpsko-makedonske metalogenetske provintsije Translated Title: The isotopic composition of lead in some Tertiary lead-zinc deposits within the Serbo-Macedonian metallogenic province - Geoloshki Anali Balkanskoga Poluostrva, 42, p. 507-525.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Kozje Brdo

General data

Deposit name(s): Kozje Brdo Identifier: YUG-00211

Commodities: Agt 0 t Class N/A Status: Dormant deposit

Company:

Longitude: 19.752 Latitude: 45.149 District: Sremski

Geology

Ore deposit type (gitology)

Asbestos, talc or magnesite deposits hosted by basic and ultrabasic rocks

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age:

Ore mineralogy
Chalcedony

Host rock mineralogy
Magnesite (Giobertite)

Agate Dolomite Ankerite

Calcite Silica

Host rocks Age:

Hostrock formation names

Fruska Gora ultrabasite massif

Ultrabasic rock

Serpentinite Listwaenite

Economy

Exploitation type
Unworked

Agt Agata, chalcedony, jasper (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Possible contamination of surface water by suspended matter.

Comments

Geological references

Ilic M. - (1998) - Gem raw materials and their occurrence in Serbia - Juvelirske mineralne sirovine i njihova nalazista u Srbiji - Beograd, Univerzitet, Rudarsko-geoloski fakultet, 140 p.

Economic references

Kram

General data

Deposit name(s): Kram Identifier: YUG-00173

Commodities: Au 0 t Class N/A Status: Primary occurrence of unknown status

Cu 0 t Class N/A

Company:

Longitude: 19.302 Latitude: 44.311 District: Macvanski

Geology

Ore deposit type (gitology)

Cu skarns: Cu, (Au)

Ore deposit shape

Discordant mass or lens of massive to submassive ore

Mineralization Age: Neogene (Miocene to Pliocene)

 Ore mineralogy
 Host rock mineralogy
 Hydrothermal alteration

 Chalcopyrite
 Grossular
 Skarn formation

Pyrrhotite Andradite
Arsenopyrite Pyroxene
Pyrite Epidote
Galena Wollastonite
Scheelite Chlorite
Bismuthinite Quartz
Tellurobismuthite Calcite

Silver Grey copper

Host rocks Age: Triassic

Hostrock formation names

Neogene granodiorite - Triassic limestone

Granodiorite

Limestone Skarn

Economy

Exploitation type

Mining method unkown

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-

Resource: - t Average grade:

Au Gold (metal)

Ore type: Ore in which the native element forms inclusions (sulphides, etc.)

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

High acid generation potential due to the sulfides minerals contained in the primary ore.

The Acid Rock Drainage produced may be partly buffered by the limestone and the skarn formation of the host lithology. Expected dissolved contents of Cu, Zn and Pb as well as As in the drainage waters with possible concentrations of those metals in the stream sediments.

Comments

Small size deposit, with gold content up to 3 g/t Other name : Duge Njive ?

Geological references

Jancovic S, Milovanovic D, Jelenkovic R, and Hrkovic K. - (1992) - Gold Deposits and Occurences in Serbia: Types, Metallogenic Units and Outlook. - Chair of Economic geology, Faculty of Mining and Geology, University of Belgrade, Belgrade. 285 p.

Economic references

Kremna

General data

Deposit name(s): Kremna Identifier: YUG-00172

Commodities: Mg 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 19.578 Latitude: 43.840 District: Zlatiborski

Geology

Ore deposit type (gitology)

Lacustrine deposits (sebkha, salar, alkaline lake): Li, B, (Na, Mg, Ca, nitrates, sulphates, etc.)

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age:

Ore mineralogy

Magnesite (Giobertite)

Dolomite Clay

Host rocks

Age:

Hostrock formation names

Tertiary lacustrine sediments

Host rock lithology

Biochemical deposit s.l.

Varved lacustrine sediment

Economy

Exploitation type

Unworked

Mg Magnesium, magnesite (MgCO3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-

Resource: - t Average grade:

Environment

Potential contamination of drainage waters by suspended matter.

Comments

Geological references

Fallick AE, Ilich M, and Russell MJ. - (1991) - A stable isotope study of the magnesite deposits associated with the alpine-type ultramafic rocks of Yugoslavia. - Economic Geology and the Bulletin of the Society of Economic Geologists, 86, (4), p. 847-861. Petrov VP, Vakanjac B, Joksimovic D, Zekic M, and Lapcevic I. - (1980) - Magnesite deposits of Serbia and their origin. -

International Geology Review, 22, (5), p. 497-510.

Economic references

Krupanj

General data

Deposit name(s): Krupanj Identifier: YUG-00153

Commodities: FI 66 250 t Class D Status: Deposit of unknown status

Sb 0 t Class N/A

Company:

Longitude: 19.377 Latitude: 44.373 District: Macvanski

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Subconcordant or stratabound mass or lens of massive to submassive ore

Mineralization Age: Cenozoic

Ore mineralogy Host rock mineralogy

Fluorite Quartz Stibnite Calcite

Galena Sphalerite Tetrahedrite Chalcopyrite Pyrite

Host rocks Age: Cenozoic

Host rock lithology
Limestone

Economy

Exploitation type

Underground mining

Sb Antimony (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

FI Fluorite (CaF2)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:66250 tAverage grade:31.45 %Resource:-tAverage grade:-%

Environment

Acid generation potential with respect to sulfides minerals.

This Acid Rock Drainage can partly be buffered by the calcite contained within the gangue mineralogy.

Comments

Deposits of Tolisavac and Ravnaja, partly exploited since 1959.

Ravnaja: 195 kt @ 31.7% CaF2 and 2.2% Pb. Kuciste: 15.6 kt @ 28.4% CaF2 and 0.5% Pb.

Output of 50,000 t/y of CaF2 ore.

Geological references

Durickovic A. - (1982) - Metalogenija rudnog polja Brasina-Zajaca-Stolice-Dobri Potok Translated Title: Metallogeny of the Brasina mining field, Zajaca, Stolice, Dobri Potok. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 40, p. 17-53. Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202. Vakanjac B. - (1982) - Geology of deposits of non-metallic minerals and mineral construction materials. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 95-111.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Kucajna

General data

Deposit name(s): Kucajna Identifier: YUG-00057

Commodities: Ag 0 t Class N/A Status: Deposit of unknown status

> 0 t Au Class N/A

0 t PbZn N/A Class

Company:

21.667 Latitude: 44.436 District: Branicevski Longitude:

Geology

Ore deposit type (gitology)

Pb-Zn-Ag skarns and stratiform mantos: Pb, Zn, Ag, (Au)

Ore deposit shape

Discordant mass or lens of massive to submassive ore

Discordant envelope of disseminated ore

Mineralization Age: Upper/Late Cretaceous

Ore mineralogy Host rock mineralogy

Galena Quartz Sphalerite Calcite

Silver Argentite Pyrargyrite Polybasite Pyrite Grey copper Bournonite Boulangerite

Jamesonite Chalcopyrite

Arsenopyrite **Bornite** Dyscrasite Berthierite

Chalcostibite Gold

Age: Upper/Late Cretaceous Host rocks

Hostrock formation names Host rock lithology Jurassic-Cretaceous limestone Limestone Laramian dacite-andesitic volcanics Dacite

Andesite

Economy

Exploitation type

Mining method unkown

Lead + Zinc (metal) PbZn

Ore type: Ore in which the element forms a distinct mineral phase

t Past production: Average grade: Reserve: t Average grade:

Resource: t Average grade:

Au Gold (metal)

Ore type: Primary sulphide ore (complex-sulphides, arsenides, sulphosalts, etc.)

Past production: - t Average grade: -

Reserve: - t Average grade: -

Resource: - t Average grade:

Ag Silver (metal)

Ore type: Primary sulphide ore (complex-sulphides, arsenides, sulphosalts, etc.)

Past production: - t Average grade: -

Reserve: - t Average grade: - Resource: - t Average grade: -

Environment

The primary mineralization is mainly composed of sulfides whose oxidation generates acid, ferric iron and dissolved metals (Pb, Zn, Cu...) that can affect drainage water, soils and stream sediments.

The potential acid mine drainage generated is buffered by the gangue mineralogy (carbonates) which are acid-consuming minerals. The host rock assemblage (limestone) which alters to calc-silicates decrease acid-buffering capacity. Presence of arsenopyrite whose oxydation may release As into the natural environment with in particular accumulation in the stream sediments.

No information related to mine waste deposits as well as to tailings which are potential sources of contaminants in the form of particulates and dissolved metals.

Comments

Massive ore contains up to 50% Pb-Zn, 0.2% Ag and 15-20 g/t Au (Jankovic - 1982)

Geological references

Jancovic S, Milovanovic D, Jelenkovic R, and Hrkovic K. - (1992) - Gold Deposits and Occurences in Serbia: Types, Metallogenic Units and Outlook. - Chair of Economic geology, Faculty of Mining and Geology, University of Belgrade, Belgrade. 285 p.

Jankovic S and Jelenkovic R. - (1995) - Gold mineralization in Yugoslavia; metallogenic environments and associations of minerals. - Studia Universitatis Babes Bolyai, Geologia. 40, (1), p. 85-102.

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Karamata S., Knezevic V., Pecskay Z. and Djordjevic M. - (1997) - Magmatism and metallogeny of the Ridanj-Krepoljin belt (eastern Serbia) and their correlation with northern and eastern analogues - Mineralium Deposita, 32, pp. 452-458

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-057

Kutlovo

General data

Deposit name(s): Kutlovo Identifier: YUG-00100

Commodities: Fe 0 t Class N/A Status: Deposit of unknown status

Mn 0 t Class N/A

Company:

Longitude: 20.752 Latitude: 44.045 District: Sumadijski

Geology

Ore deposit type (gitology)

Laterite-related ore deposits: Fe, Mn, Ni-Co, Au, Pt, corundum, P, REE, Nb, etc.

Fe and Mn sedimentary deposits: Fe, Mn

Ore deposit shape

Cap, blanket, crust

Stratabound envelope of disseminated ore

Mineralization Age: Lower/Early Cretaceous

Ore mineralogy

Chamosite Hematite Goethite

Host rocks Age: Lower/Early Cretaceous

Hostrock formation names Host rock lithology

Gault sediments Conglomerate Sandstone

Economy

Exploitation type

Mining method unkown

Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:

Reserve:

- t

Average grade:

- t

Average grade:

Resource: - t Average grade:

Mn Manganese (metal)

Ore type: Ore of indeterminate nature

Past production:

Reserve:

- t

Average grade:

- t

Average grade:

Reserve: - t Average grade: - Resource: - t Average grade: -

Environment

Potential particulate and colloidal iron compounds in drainage water.

Comments

Geological references

Anonymous. - (1978) - The Iron Ore Deposits of Europe and adjacent Areas. - Explanatory Notes to the International Map of the Iron Ore Deposits of Europe, 1:2,500,000. Zitzmann A. Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover. 386 p. Jankovic S. - (1977) - The iron ore deposits in Yugoslavia. - The iron ore deposits of Europe and adjacent areas; explanatory notes to the International map of the iron ore deposits of Europe, 12,500,000; Volume I, Text and figures. Zitzmann A (Ed), Bundesanst, Geowiss. p. 411-418.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Other references

Other data bases

The Iron Ore Deposits of Europe - 1978 YU07

Lajkovaca

General data

Deposit name(s): Lajkovaca Identifier: YUG-00127

Commodities: Cu 24 600 t Class D Status: Deposit or prospect of unknown status

Au 0 t Class N/A

Company:

Longitude: 19.849 Latitude: 44.135 District: Kolubarski

Geology

Ore deposit type (gitology)

Volcanogenic massive and disseminated Cu-Au sulphide deposits: Cu, Au, (Zn, Co, Mo, Bi)

Ore deposit shape

Discordant lode or vein (thickness > 50 cm), in clusters or isolated

Stratabound envelope of disseminated ore

Mineralization Age: Jurassic

 Ore mineralogy
 Host rock mineralogy
 Hydrothermal alteration

 Pyrite
 Epidote
 Silicification

Chalcopyrite Chloritization
Chalcocite Carbonatization
Covellite Epidotitization
Iron Oxydes(unspecified) Albitization

Host rocks Age: Jurassic

Hostrock formation names

Diabase - Ophiolite Complexe

Dolerite, diabase

Gabbro

Economy

Exploitation type

Mining method unkown

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:24600 tAverage grade:0.82 %Resource:-tAverage grade:-%

Au Gold (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

High acid generation potential due to the sulfide content of the primary ore body.

This Acid Rock Drainage can be enhanced or reduced by the various mineral assemblages forming the hydrothermal alteration halo.

Comments

Western Serbia. Average in Cu: 1-2%, Au usually less than 1 g/t.

Reserves of C1 category: 3 Mt @ 0.82% Cu

Other occurrences of the area : Beli Potok, Rechitsa (145,000 t @ 1.21% Cu), Markov Potok

Geological references

Jancovic S, Milovanovic D, Jelenkovic R, and Hrkovic K. - (1992) - Gold Deposits and Occurences in Serbia: Types, Metallogenic

Units and Outlook. - Chair of Economic geology, Faculty of Mining and Geology, University of Belgrade, Belgrade. 285 p. Jankovic S and Putnik S. - (1980) - Copper deposits in the Southeastern Europe connected with the ophiolite complexes. - European Copper Deposits. Jankovic S and Sillitoe RH (Eds), UNESCO - IGCP Projects, Belgrade. p. 117-123. Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Putnik S. - (1981) - Metallogenia bakra jurske dijabaz-roznacke formacije - Metallogenesis of copper in jurassic diabase-chert formation - Geoinstitut. Beograd, 1981. Monographs, vol. 6, 117 p., 2 plates.

Economic references

Lebare

General data

Deposit name(s): Lebare Identifier: YUG-00167

Commodities: PbZn 0 t Class N/A Status: Group of mineral occurrences

Company:

Longitude: 20.769 Latitude: 43.237 District: Kosovo

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Unspecified ore deposits related to basic-ultrabasic magmatic rocks

Ore deposit shape

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age:

Ore mineralogy Hydrothermal alteration

Pyrrhotite Silicification

Arsenopyrite

Chalcopyrite

Sphalerite

Galena

Marcasite

Grey copper Tetrahedrite

retraneunt

Psilomelane

Host rocks Age

Hostrock formation names Host rock lithology

Silicified serpentinite - Hydroquartzite Serpentinite

Andesite

Economy

Exploitation type

Unworked

PbZn Lead + Zinc (metal)

Ore type: Ore of indeterminate nature

Past production: - t Average grade: -

Reserve: - t Average grade: - Resource: - t Average grade: -

Environment

Acid generation potential due to the sulfides minerals contained in the ore.

Expected dissolved contents of Fe, Cu, Zn and Pb in drainage waters.

As may be released from the arsenopyrite and the sulfosalt into the surface water with expected concentrations in stream sediments.

Comments

Presence of "hydroquartzites" - gold ??

Geological references

Novovic T. - (1977) - Sulfidne Pb-Zn pojave u Lebaru (Kopaonik) Translated Title: Sulfide lead-zinc occurrences in Lebare, Kopaonik. - Glasnik Prirodnjackog Muzeja u Beogradu, Serija A: Mineralogija, Geologija, Paleontologija, 32, p. 21-25.

Economic references

YUG-00167

Lece

General data

Deposit name(s): Lece Identifier: YUG-00083

Commodities: Pb 39 000 t Class C Status: Deposit of unknown status

Zn 58 000 t *Class* C Au 10 t *Class* D Ag 39 t *Class* E

Company:

Longitude: 21.535 Latitude: 42.928 District: Jablanicki

Geology

Ore deposit type (gitology)

Low-sulphidation (adularia - sericite) epithermal deposits: Au, Ag, Pb, Zn, Cu, Sb, (Hg, As, Mn, Tl)

Ore deposit shape

Breccia-pipe, funnel, chimney, column, brecciated dyke

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Discordant envelope of disseminated ore

Mineralization Age: Neogene (Miocene to Pliocene)

Ore mineralogyHost rock mineralogyHydrothermal alterationPyriteQuartzAdularizationMarcasiteAgateSilicificationSphaleriteSideriteSericitizationGalenaSericiteKaolinization

Galena Sericite
Gold Chalcedony
Chalcopyrite Opal
Enargite Calcite
Grey copper Amethyst
Stibnite Ankerite

Host rocks Age: Neogene (Miocene to Pliocene)

Hostrock formation names Host rock lithology

Gajtan and Tulare calderas Volcaniclastic rocks: pyroclastic rocks, Andesitic Volcanic Complex volcaniclastic (volcano-detrital,

volcano-sedimentary) rocks

Andesite Dacite Latite

Economy

Exploitation type

Underground mining

Au Gold (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:9.5 tAverage grade:4.11 g/tReserve:- tAverage grade:- g/tResource:- tAverage grade:- g/t

Ag Silver (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production:39 tAverage grade:16.91 g/tReserve:- tAverage grade:- g/tResource:- tAverage grade:- g/t

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:39000 tAverage grade:1.7 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Zn Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:58000 tAverage grade:2.5 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Environment

The sulfidic composition of the primary ore mineralogy as well as the large alteration halos when oxydized, generate acidic waters and release dissolved metals into the environment.

The presence of Cu sulfosalts containing As may generate arsenic-rich mine water composition. Most of those elements can contaminate surface and groundwater, soils and stream sediments.

No information related to mine waste deposits as well as to tailings which are potential sources of contaminants in the form of particulates and dissolved metals.

Existence of CN or Hg associated with the gold mineral processing?

Comments

Uppermost level: gold values range from trace to several g/t, 2 g/t average. Vertical extension 30 to over 100 m. PbZn mineralisation beneath Au mineralization, with a vertical extension of 100 to 250 m. The ore contains 2.8% Pb, 6% Zn, 6 g/t Au and 16 g/t Ag.

Downward extension with only PbZn mineralization and minor Au content.

Bottom characterized by minor content of PbZn, up to 0.3% Cu and traces of Au.

Production 1953-1959: 470,000 t @ 1.95% Pb, 4.5% Zn, 6 g/t Au and 19 g/t Ag.

Production 1953-1983: 2,320,209 t @ 1.7% Pb, 2.5% Zn, 4.11 g/t Au and 16.91 g/t Ag (Popovic - 2000)

Geological references

Ilic M. - (1998) - Gem raw materials and their occurrence in Serbia - Juvelirske mineralne sirovine i njihova nalazista u Srbiji - Beograd, Univerzitet, Rudarsko-geoloski fakultet, 140 p.

Jancovic S, Milovanovic D, Jelenkovic R, and Hrkovic K. - (1992) - Gold Deposits and Occurences in Serbia: Types, Metallogenic Units and Outlook. - Chair of Economic geology, Faculty of Mining and Geology, University of Belgrade, Belgrade. 285 p.

Jankovic S and Jelenkovic R. - (1995) - Gold mineralization in Yugoslavia; metallogenic environments and associations of minerals. - Studia Universitatis Babes Bolyai, Geologia. 40, (1), p. 85-102.

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S, Petkovic M, Tomson IN, and Kravcov V. - (1980) - Porphyry copper deposits in the Serbo-Macedonian Province, southeastern Europe. - Special Publication of the Society for Geology Applied to Mineral Deposits, 1, p. 96-102.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S. - (1984) - Major metallogenic units and ore deposits in Yugoslavia. - Earth Science (Paris) = Sciences de la Terre (Paris), 17, p. 385-394.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Pesut D. - (1976) - Geology, tectonics and metallogeny of Lece Massif. - Rasprave Zavoda za Geoloska i Geofizicka Istrazivanja, 14, 59 p.

Popovic R. - (1992) - Precious metals in the Kopaonik and surrounding area central Serbia (Yugoslavia). - International Geological Congress, Abstracts - Congrès Géologique Internationale, Résumés, 29, p. 186-187.

Popovic R. - (2000) - Distribution of base and precious metals in the Lece volcano-intrusive massif (Vardar Zone) - Proceedings of the International Symposium "Geology and Metallogeny of the Dinarides and the Vardar Zone". The Academy of Sciences and Arts of the Republic of Srpska. The Department of Natural, Mathematical and Technical Sciences, Vol. 1, pp. 443-452

Schumacher F. - (1954) - The ore deposits of Jugoslavia and the development of its mining industry - Economic Geology, Vol 49, n°5, pp. 451-492

Vujanovicj V. - (1976) - Prilog poznavanju geneze sulfidnog lezhishta Letse Translated Title: Genesis of the Lece sulfide deposits, Serbia. - Zapisnici Srpsko Geolosko Drustvo, 1975-1976, p. 209-215.

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-108

Leskova Glava

General data

Deposit name(s): Leskova Glava Identifier: YUG-00161

Commodities: PbZn 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 20.714 Latitude: 43.000 District: Kosovo

Geology

Ore deposit type (gitology)

Atypical or unspecified ore deposits associated with acid and alkaline plutonic rocks

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:

Host rocks Age:

Economy

Exploitation type
Unworked

PbZn Lead + Zinc (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

No data available.

Comments

S of Crnac

Geological references

Jankovic S. - (1978) - Izotopni sastav olova u pojedinim tertsijarnim olovo-tsinkovim rudishtima Srpsko-makedonske metalogenetske provintsije Translated Title: The isotopic composition of lead in some Tertiary lead-zinc deposits within the Serbo-Macedonian metallogenic province - Geoloshki Anali Balkanskoga Poluostrva, 42, p. 507-525.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Lipa

General data

Deposit name(s): Lipa Identifier: YUG-00122

Commodities: Cu 11 000 t Class D Status: Old industrial mine, exhausted deposit

Company: Rudarsko Topionicarski Basen BOR

Longitude: 21.962 Latitude: 44.190 District: Borski

Geology

Ore deposit type (gitology)

High-sulphidation epithermal massive-enargite (gold) sulphide deposits: Cu, (As, Au)

Ore deposit shape

Subconcordant or stratabound mass or lens of massive to submassive ore

Mineralization Age:

Ore mineralogy Host rock mineralogy Hydrothermal alteration

Pyrite Chalcedony Kaolinization

Enargite Barite Advanced argillic alteration

Kaolinite Silicification

Alunite Diaspore

Host rocks Age:

Stibioluzonite

Economy

Exploitation type

Mining method unkown

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:11000 tAverage grade:1.1 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Environment

High acid generation potential due to the sulfidic composition of the primary ore.

The widespread hydrothermal alteration types (silica, advanced argillic) tends to increase acid-generating capacity of the rocks.

Potential release of Cu and others metals into the drainage waters.

Comments

Geological references

Jankovic S, Terzic M, Aleksic D, Karamata S, Spasov T, Jovanovic M, Milicic M, Miskovic V, Grubic A, and Antonijevic I. - (1980) - Metallogenic features of copper deposits in the volcano- intrusive complexes of the Bor District, Yugoslavia. - Special Publication of the Society for Geology Applied to Mineral Deposits, 1, p. 42-49.

Karamata S., Knezevic V., Pecskay Z. and Djordjevic M. - (1997) - Magmatism and metallogeny of the Ridanj-Krepoljin belt (eastern Serbia) and their correlation with northern and eastern analogues - Mineralium Deposita, 32, pp. 452-458

Serafimovski T., Kozelj D. and Jelenkovic R. - (2000) - The morphogenetic types of the epithermal gold mineralization in Serbia and Macedonia - Metallogeny 2000, Review and perspectives - Symposium in honor of the retirement of Bernard Poty, Nancy (France), University Henri Poincare - Nancy 1. pp.151-152.

Sillitoe RH. - (1980) - The carpathian-Balkan porphyry copper belt. A cordilleran perspective. - European Copper Deposits. Jankovic S and Sillitoe RH (Eds), UNESCO - IGCP Projects N° 169 and 63, Belgrade. p. 26-35.

Economic references

Other references

Lipljan

General data

Deposit name(s): Lipljan Identifier: YUG-00041

Muhadjer Babus

Commodities: LstL 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 21.128 Latitude: 42.521 District: Kosovo

Geology

Ore deposit type (gitology)

Sedimentary-related industrial rocks and minerals: Clays, limestones, dolomite, calcite, siliceous sand, quartrite, etc.

quartzite, etc.

Slates, marble and ornamental-stone deposits

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age:

_

Host rocks Age: Triassic

Hostrock formation names Host rock lithology

Kacanik-Veles Formation

Undifferentiated metamorphic rock

Marble, cipolin (crystalline limestone)

Economy

Exploitation type

Mining method unkown

LstL Limestone for lime (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:Reserve:-tAverage grade:

Resource: - t Average grade:

Environment

No specific environmental signature is known with this type of ore deposit.

Comments

Geological references

Rubezanin D. - (1978) - Leziste dolomiticnih mermera Muhadjer Babus kod Lipljanja (Kosovo) Translated Title: The Muhadjer Babus dolomitic marble deposit near Lipljan, Kosovo Province. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 35-36, p. 19-33.

Economic references

Lipnica

General data

Deposit name(s): Lipnica Identifier: YUG-00154

Commodities: Gp 0 t Class N/A Status: Producing industrial mine

Company: Fabrica cementa NOVI POPOVAC

Longitude: 20.825 Latitude: 43.905 District: Sumadijski

Geology

Ore deposit type (gitology)

Evaporite-related industrial rocks and minerals: attapulgite, gypsum, anhydrite, magnesite, sulphur

Unspecified volcano-sedimentary and sedimentary-exhalative deposits

Ore deposit shape

Subconcordant or stratabound mass or lens of massive to submassive ore

Mineralization Age

Ore mineralogy

Gypsum Anhydrite Calcite

Host rocks Age: Upper/Late Jurassic (Malm)

Hostrock formation names Host rock lithology

Diabase Chert Formation Coarse turbidite, mass-flow deposit

Volcaniclastic sandstone

Medium- to fine-grained detrital rock

Dolerite, diabase

Economy

Exploitation type

Surface mining

Gp Gypsum, anhydrite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Potential contamination of drainage water by suspended matter and salts. Geomorphic modifications in the landscape.

Comments

The deposit has been exploited for more than 60 years, and the ore used in the cement industry as retarders.

Geological references

llic M. - (1995) - Calcium sulphate deposits of the Gruza area: a new view about their origin - Geol. Soc. Greece, Sp. Publ., N° 4, 1995, Proceedings of the XV Congress of the Carpatho-Balcan Geological Association, September 1995, Athens Greece, pp 734-736

llich M. - (1991) - Yugoslavian cement. Raw materials and production - Industrial Minerals, november 1991, pp. 59-61

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Marovic M and Markovic S. - (1978) - On the structural features and origin of gypsum and anhydrite in the Lipnica Mine near Kragujevac. - Geoloshki Anali Balkanskoga Poluostrva.(42), p. 91-102.

Nikolic D, Poharc V, and Logar M. - (1978) - Mineralogija lezista gipsa i anhidrita - Lipnica Translated Title: Mineralogical study of the Lipnica gypsum and anhydrite mine, Serbia. - IX Kongres Geologa Jugoslavije. Sarajevo, Yugoslavia. 1978. p. 443-452.

Vakanjac B. - (1982) - Geology of deposits of non-metallic minerals and mineral construction materials. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 95-111.

YUG-00154

Economic references

Lipovac

General data

Deposit name(s): Lipovac Identifier: YUG-00051

Commodities: Cr 0 t Class N/A Status: Dormant deposit

> 0 t Fe Class N/A

> 0 t Ni N/A Class

Company:

20.621 Latitude: 44.257 District: Sumadijski Longitude:

Geology

Ore deposit type (gitology)

Gabbro-norite hosted deposits of disseminated titano-magnetite: Fe, Ti, (V, P)

Laterite-related ore deposits: Fe, Mn, Ni-Co, Au, Pt, corundum, P, REE, Nb, etc.

Ore deposit shape

Subconcordant or stratabound mass or lens of massive to submassive ore

Stratabound envelope of disseminated ore

Mineralization Age:

Ore mineralogy

Magnetite

Chromite

Spinel

Millerite

Pyrrhotite

Pentlandite

Chalcopyrite

Bravoite

Host rocks Age:

Host rock lithology

Basic to ultrabasic rock s.l.

Peridotite

Serpentinite

Harzburgite

Economy

Exploitation type

Unworked

Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: t Average grade: % Reserve: t Average grade: 42.5 % %

Resource: t Average grade:

Cr Chrome (Cr2O3)

Ore type: Ore in which the element forms a distinct mineral phase

% Past production: Average grade: Reserve: t Average grade: 3 % Resource: t Average grade: %

Ni Nickel (metal)

Ore type: Ore in which the element forms a distinct mineral phase

t % Past production: Average grade: Reserve: t Average grade: % % t Average grade: Resource:

YUG-00051

Environment

The oxydation of the sulfide minerals associated with the magnetite leads to the production of Acid Mine Drainage and the release of contaminants (readily soluble salts and metals) into the environment.

The presence of chromite in a laterite-related ore deposit, may generate hexavalent Chromium in the environment.

This element is highly toxic for the humans and the ecosystems and can be bioaccumulated in the food chain.

Comments

The massive ore contains 40-45% Fe, up to 2.7-3.4% Cr and up to 1% Ni+Co (Jankovic -1982) - PGE ? Data in Laznicka P. (1985) p 175

Geological references

Anonymous. - (1978) - The Iron Ore Deposits of Europe and adjacent Areas. - Explanatory Notes to the International Map of the Iron Ore Deposits of Europe, 1:2,500,000. Zitzmann A. Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover. 386 p.

Boev B. and Jankovic S. - (1996) - Nickel and nikeliferous iron deposits of the Vardar Zone (SE Europe) with particular reference to the Rzanovo-Studena Voda ore-bearing series - University "St. Kiril and Metodij" - Skopje. Faculty of Mining and Geology - Stip. Geological Department. Special Issue n° 3, 273 p.

Jankovic S and Putnik S. - (1980) - Copper deposits in the Southeastern Europe connected with the ophiolite complexes. - European Copper Deposits. Jankovic S and Sillitoe RH (Eds), UNESCO - IGCP Projects, Belgrade. p. 117-123.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-051
The Iron Ore Deposits of Europe - 1978 YU08

Lisa

General data

Deposit name(s): Lisa Identifier: YUG-00070

Commodities: Sb 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 20.259 Latitude: 43.650 District: Moravicki

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Discordant envelope of disseminated ore

Mineralization Age: Cenozoic

Ore mineralogy Hydrothermal alteration

Stibnite Silicification

Pyrite
Bravoite
Valentinite
Senarmontite

Host rocks Age: Upper/Late Cretaceous

Resource:

Hostrock formation names
Silicified limestone
Upper Cretaceous marl

Host rock lithology
Limestone
Marl

Economy

Sb

Exploitation type

Mining method unkown

Antimony (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-

Average grade:

Environment

Presence of pyrite in the associated minerals that may generate Acid Mining Drainage.

Comments

Golija district

Geological references

Jankovic S. - (1979) - Antimony deposits in south-eastern Europe. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 37, p. 25-48.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Topalovic D. and Simic M. - (2000) - The geological, structural and metallogenical features of the Ajducko Brdo - Golija ore field in the Vardar Zone - Proceedings of the International Symposium "Geology and Metallogeny of the Dinarides and the Vardar Zone". The Academy of Sciences and Arts of the Republic of Srpska. The Departement of Natural, Mathematical and Technical Sciences, Vol. 1, pp. 435-442

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe

26-080

Lisina

General data

Deposit name(s): Lisina Identifier: YUG-00097

Bossiljgrad

Commodities: Phos 4 600 000 t Class D Status: Dormant deposit

Company:

Longitude: 22.451 Latitude: 42.527 District: Pcinjski

Geology

Ore deposit type (gitology)

Sedimentary phosphate deposits: P, (U)

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Ordovician

Ore mineralogy Host rock mineralogy

Apatite Quartz Sericite

Calcite Biotite

Host rocks Age: Lower/Early Ordovician (Arenig-Tremadocian)

i remadocian)

Hostrock formation names

Metamorphosed phosphatic sandstone

Host rock lithology

Quartzite, quartzose sandstone

Sericitic schist, sericite schist of

igneous origin

Economy

Exploitation type
Unworked

Phos Phosphate (P2O5)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:-tAverage grade:-%Resource:4600000 tAverage grade:11.5%

Environment

No specific environmental signature according to the data available.

Comments

Resources of about 40 Mt @ 10-13% P2O5, beneficiation tests have shown that the ore can provide a phosphate concentrate nearly 33% P2O5.

The apatite is intergrown or coated with carbonate.

The phosphorite bed is 16-32 m thick, containing 2-19 % P2O5, but average is 10-12% P2O5 (Jankovic and al - 1997)

Geological references

Anonymous. - (1987) - World Survey of Phosphate Deposits. - The British Sulphur Corporation Limited, London. 274 p.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Simic M. - (1997) - Geological-structural features of the Besna Kobila Zone in SE Serbia - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 185-195

YUG-00097

Vakanjac B. - (1982) - Geology of deposits of non-metallic minerals and mineral construction materials. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 95-111.

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-165

Liska

General data

Deposit name(s): Liska Identifier: YUG-00063

Chave

Kriva Strana Zlatibor

Commodities: Mg 740 000 t Class D Status: Deposit of unknown status

Company: Radna Organizacija Rudnik Magnezita Magnezit

Longitude: 19.634 Latitude: 43.694 District: Zlatiborski

Geology

Ore deposit type (gitology)

Asbestos, talc or magnesite deposits hosted by basic and ultrabasic rocks

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Mineralization

Age: Cenozoic

Ore mineralogy

Magnesite (Giobertite)

Host rocks Age:

Hostrock formation names Host rock lithology

Zlatibor Massif Basic to ultrabasic rock s.l.

Peridotite Serpentinite

Economy

Exploitation type

Underground mining Surface mining

Mg Magnesium, magnesite (MgCO3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: 740000 t Average grade: Reserve: - t Average grade: Resource: - t Average grade: -

Environment

Erosion of earthen materials exposed at the site may cause significant loadings of sediments to nearby waterbodies and the source of degradation of surface water quality.

Comments

The mine was established in 1956. 1956-1970, current output of 20,000 t/y of ore, 1970-1981, current output of 40,000 t/y.

Geological references

Fallick AE, Ilich M, and Russell MJ. - (1991) - A stable isotope study of the magnesite deposits associated with the alpine-type ultramafic rocks of Yugoslavia. - Economic Geology and the Bulletin of the Society of Economic Geologists, 86, (4), p. 847-861.

llic M, Rubezanin D, and Cicic S. - (1978) - O genezi magnezitskih lezista zlatiborskog ultrabazitskog masiva Translated Title: The genesis of magnesite deposits of the Zlatibor ultramafic massif, western Serbia In: Zbornik radova Translated Title: Proceedings of the 9th Geologic Congress of Yugosla - IX Kongres Geologa Jugoslavije. Sarajevo, Yugoslavia. 1978. p. 539-554.

Petrov VP, Vakanjac B, Joksimovic D, Zekic M, and Lapcevic I. - (1980) - Magnesite deposits of Serbia and their origin. - International Geology Review, 22, (5), p. 497-510.

YUG-00063

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Other references

Other data bases

Carte Métallogénique de l'Europe 26-070

Lubnica

General data

Deposit name(s): Lubnica Identifier: YUG-00228

Commodities: Coal 0 t Class N/A Status: Producing small-scale mine

Company: Rudnik lignita LUBNICA

Longitude: 22.188 Latitude: 43.862 District: Zajecarski

Geology

Ore deposit type (gitology)

Lignite deposits

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Miocene
Host rocks Age: Miocene

Hostrock formation names Host rock lithology

Timok Coal Basin Bituminous or carbureted rock: clay,

claystone, sand, sandstone, limestone, dolomite, etc. Coarse-grained detrital rock s.s. Medium- to fine-grained detrital

sediment

Economy

Exploitation type

Underground mining

Coal Coal, lignite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Potential Acid Rock Draiange generation due to the presence of possible sulfides minerals.

Suspended matter in mine discharge.

Colliery spoil heaps erosion, instability and combustion.

Comments

The lignite mined contains up to 35% of moisture, about 14% of ash. Its heating value is about 12,000 kJ/kg.

Geological references

Cveticanin R. - (1982) - Review of Yugoslav coal basins. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 46-67.

Economic references

Anonymous - (1998) - Electric Power Industry of Serbia - 1998 - EPS, Beograd 1998, 152 p.

Anonymous - (1999) - Electric Power Industry of Serbia - 1999 - EPS, Public Relations Center, Beograd, 56 p.

Mackatica

General data

Deposit name(s): Mackatica Identifier: YUG-00087

Commodities: Mo 100 000 t Class B Status: Dormant deposit

Company:

Longitude: 22.217 Latitude: 42.747 District: Pcinjski

Geology

Ore deposit type (gitology)

Porphyry Cu-Mo and Mo deposits: Cu, Mo, (W, U, Re)

Ore deposit shape

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Column, chimney with possibly brecciated ore

Mineralization Age: Cenozoic

Ore mineralogy Host rock mineralogy Hydrothermal alteration

Molybdenite Quartz Silicification
Pyrite K-Feldspar Sericitization

Hematite Muscovite
Chalcopyrite Calcite

Sphalerite Galena Hübnerite

Host rocks Age: Cenozoic

Hostrock formation names

Surdulica granodiorite complex

Granodiorite

Dacite Schist/shale

Economy

Exploitation type
Unworked

Mo Molybdenum (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:100000 tAverage grade:0.1 %

Environment

High acid generation potential due to the primary ore composition enriched in sulfides minerals.

The alteration types increase acid-generating capacity of the rocks.

Comments

Data in Laznicka P. (1985) p 1226: 20,000 t Mo (0.1%) Other data: 181 Mt @ 0.078% Mo: 141,180 t Mo The contents of Cu and W in the ore are very low.

Rhenium is about 185 g/t in the Mo concentrate (Simic M. - 1997)

Geological references

Jankovic S and Petkovic M. - (1980) - The main lead, zinc and copper deposits of Yugoslavia; excursion No. 202 C. - Yugoslavia; outline of Yugoslavian geology; Excursion 201 A-202 C. Grubic A (Ed), Int, Geol. p. 75-94.

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S, Petkovic M, Tomson IN, and Kravcov V. - (1980) - Porphyry copper deposits in the Serbo-Macedonian Province, southeastern Europe. - Special Publication of the Society for Geology Applied to Mineral Deposits, 1, p. 96-102.

YUG-00087

Jankovic S. - (1967) - Metalogenetske epohe i rudonosna podrucja jugoslavije. - Beograd, 1967.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S. - (1984) - Major metallogenic units and ore deposits in Yugoslavia. - Earth Science (Paris) = Sciences de la Terre (Paris), 17, p. 385-394.

Mankov S and Andreeva L. - (1978) - Tungsten-molybdenum deposits in the Bulgarian-Yugoslavian border region. - Metallization associated with acid magmatism; Volume 3. Geol, Surv. p. 39-42.

Schumacher F. - (1954) - The ore deposits of Jugoslavia and the development of its mining industry - Economic Geology, Vol 49, n°5, pp. 451-492

Simic M. - (1997) - Geological-structural features of the Besna Kobila Zone in SE Serbia - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 185-195

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-122

Maglic

General data

Deposit name(s): Maglic Identifier: YUG-00071

Commodities: Cr 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 20.544 Latitude: 43.603 District: Raski

Geology

Ore deposit type (gitology)

Unspecified ore deposit type

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:

Ore mineralogy
Chromite

Host rocks Age:

Economy

Exploitation type

Mining method unkown

Cr Chrome (Cr2O3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: - t Average grade:

Reserve: - t Average grade: - Resource: - t Average grade: -

Environment

No specific environmental signature.

Comments

Geological references

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-081

Magura

General data

Deposit name(s): Magura Identifier: YUG-00024

Goles Mg

Commodities: Mg 2 500 000 t Class C Status: Dormant deposit

Company:

Longitude: 21.009 Latitude: 42.537 District: Kosovo

Geology

Ore deposit type (gitology)

Asbestos, talc or magnesite deposits hosted by basic and ultrabasic rocks

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Cenozoic

Ore mineralogy Host rock mineralogy

Magnesite (Giobertite) Opal
Sepiolite Chalcedony

Host rocks Age:

Hostrock formation names Host rock lithology

Golesh ultramafic mass Basic to ultrabasic rock s.l.

Serpentinite

Economy

Exploitation type

Underground mining

Mg Magnesium, magnesite (MgCO3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:2500000 tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Trough erosion of exposed mining areas, the ore mineralogy and host rock alteration can generate high suspended solids content in surface water that can produce some impacts associated with surface waters, groundwater and terrestrial ecosystems.

Comments

The ore contains 44-49% MgO, 0.2-1.5% CaO and 0.2-5.0% SiO2.

Production between 1923-1995: 2.5 Mt of magnesite.

Hight content of Sepiolite which has not been recovered up to now.

Geological references

Fallick AE, Ilich M, and Russell MJ. - (1991) - A stable isotope study of the magnesite deposits associated with the alpine-type ultramafic rocks of Yugoslavia. - Economic Geology and the Bulletin of the Society of Economic Geologists, 86, (4), p. 847-861.

Ilic M., Bacanac M., and Tosovic R. - (1995) - Glavne geoloske karakteristike i postanak zicnog magnezitskog lezista Goles - The main geological characteristics and the origin of the vein magnesite deposit of Goles. - Transactions of the Faculty of Mining and Geology, b. 34, Belgrad, 1995, pp. 285-292.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S. - (1984) - Major metallogenic units and ore deposits in Yugoslavia. - Earth Science (Paris) = Sciences de la Terre (Paris), 17, p. 385-394.

YUG-00024

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Petrov VP, Vakanjac B, Joksimovic D, Zekic M, and Lapcevic I. - (1980) - Magnesite deposits of Serbia and their origin. - International Geology Review, 22, (5), p. 497-510.

Vakanjac B and Ilich M. - (1980) - Non-metallics in the ultramafites of the ophiolite complex of Yugoslavia. - Ophiolites; International ophiolite symposium. Nicosia, Cyprus. April 1-8, 1979. p. 722-726.

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-111

Majdanpek

General data

Deposit name(s): Majdanpek Identifier: YUG-00058

Commodities: Au 240 t Class B Status: Producing industrial mine

3 750 000 t Cu Class В 1 750 t С Ag Class 30 000 t С Мо Class PbZn 83 000 t Class С 0 t Class N/A

Company: Rudarsko Topionicarski Basen BOR

Longitude: 21.950 Latitude: 44.376 District: Borski

Geology

Ore deposit type (gitology)

Porphyry Cu-Au deposits: Cu, Au, (Ag, Bi, Te)

Replacement deposits (skarns, mantos): Au, Cu, Pb, Zn, Ag, W, Mo, Sn, Fe

Ore deposit shape

Discordant envelope of disseminated ore

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Upper/Late Cretaceous

Ore mineralogy Hydrothermal alteration

ChalcopyriteBiotitizationBorniteSericitizationMolybdeniteSilicification

Telluride Gold Pyrite Magnetite Tellurite

Host rocks Age: Upper/Late Cretaceous

Hostrock formation namesHost rock lithologyPrecambrian gneissQuartz dioriteSenonian subvolcanic intrusion ofGneiss (s.l.)

andesite porphyr

Economy

Exploitation type

Surface mining

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:1550000 tAverage grade:0.31 %Reserve:- tAverage grade:- %Resource:2200000 tAverage grade:0.31 %

Mo Molybdenum (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:30000 tAverage grade:0.005 %Resource:-tAverage grade:-%

Ag	Silver (metal)				
	Ore type:	Ore in which the eleme refractory elem	nt does not form a distinct	mineral phase (i.e. camoufla	aged or
	Past production:	750	t	Average grade: 1	.5 g/t
	Reserve:	-	t	Average grade:	- g/t
	Resource:	1000	t	Average grade: 1	.5 g/t
Au	Gold (metal)				
	Ore type: Ore in which the element forms a distinct mineral phase				
	Past production:	100	t	Average grade: 0	.2 g/t
	Reserve:	-	t	Average grade:	- g/t
	Resource:	140	t	Average grade: 0	.2 g/t
PbZn	Lead + Zinc (met	tal)			
	Ore type: Ore in which the element forms a distinct mineral phase				
	Past production:	-	t	Average grade:	- %
	Reserve:	-	t	Average grade:	- %
	Resource:	83000	t	Average grade: 4	.6 %
Fe	Iron (metal)				
	Ore type: Ore in which the element forms a distinct mineral phase				
	Past production:	-	t	Average grade:	-
	Reserve:	-	t	Average grade:	-
	Resource:	-	t	Average grade:	-

Environment

Acid Mine Drainage production generating high concentrations of dissolved metals in drainage water. The large alteration halos and mineral assemblages have a significant acid generation capacity.

No accurate information related to mine waste deposits as well as to tailings which are potential sources of contaminants in the form of particulates and dissolved metals.

Comments

In 1978, reserves were estimated at 200 Mt @ 0.83% Cu and 0.005% Mo. Modern open-pit began in 1959 and in 1981, the output was 14 Mt/y of ore and 33.5 Mt of overburden.

Ore output: 36,000 t/day

Chalcopyrite contains native gold, tellurides and sellenides.

Molybdenite has a Rhenium content of 2000 g/t.

Data in Laznicka P. (1985) p 974 : 3 Mt Cu (0.6%), 30,000 t Mo, 1,800 t Ag, 190 t Au.

In 1998, current reserves exceed 800 Mt @ 0.4% Cu and 0.3 g/t Au (Herrington and al - 1998).

Majdanpek produces magnetite concentration from flotation tailing, the concentrate is about 62% Fe.

Geological references

Anonymous. - (1978) - The Iron Ore Deposits of Europe and adjacent Areas. - Explanatory Notes to the International Map of the Iron Ore Deposits of Europe, 1:2,500,000. Zitzmann A. Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover. 386 p.

Antonijevic I. - (1983) - Lezista gvozda Srbije Translated Title: The iron ore deposits of Serbia. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 41, p. 5-40.

Bogdanovic PO. - (1976) - Metalogenetska rejonizacija istocne Srbije Translated Title: Metallogenic zoning of eastern Serbia. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 33-34, p. 111-133.

Herrington R.J., Jankovic S. and Kozelj D. - (1998) - The Bor and Majdanpek copper-gold deposits in the context of the Bor Metallogenic Zone (Serbia, Yougoslavia) - MDSG 98 Programme at St Andrews Scotland 13th-15th December 1998, 10 p.

Jancovic S, Milovanovic D, Jelenkovic R, and Hrkovic K. - (1992) - Gold Deposits and Occurences in Serbia: Types, Metallogenic Units and Outlook. - Chair of Economic geology, Faculty of Mining and Geology, University of Belgrade, Belgrade. 285 p.

Jankovic S and Jelenkovic R. - (1995) - Gold mineralization in Yugoslavia; metallogenic environments and associations of minerals. - Studia Universitatis Babes Bolyai, Geologia. 40, (1), p. 85-102.

Jankovic S and Petkovic M. - (1980) - The main lead, zinc and copper deposits of Yugoslavia; excursion No. 202 C. - Yugoslavia; outline of Yugoslavian geology; Excursion 201 A-202 C. Grubic A (Ed), Int, Geol. p. 75-94.

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S, Herrington RJ, Kozelj D, and Porter TMe. - (1998) - The Bor and Majdanpek copper-gold deposits in the context of the Bor metallogenic zone (Serbia, Yugoslavia) In: Porphyry and hydrothermal copper & gold deposits; a global perspective; conference proceedings. - Porphyry and hydrothermal copper & gold deposits; a global perspective. Perth, West.Aust., Australia. Nov. 30-Dec. 1, 1998.

Jankovic S, Petkovic M, Tomson IN, and Kravcov V. - (1980) - Porphyry copper deposits in the Serbo-Macedonian Province, southeastern Europe. - Special Publication of the Society for Geology Applied to Mineral Deposits, 1, p. 96-102.

Jankovic S, Terzic M, Aleksic D, Karamata S, Spasov T, Jovanovic M, Milicic M, Miskovic V, Grubic A, and Antonijevic I. - (1980) - Metallogenic features of copper deposits in the volcano- intrusive complexes of the Bor District, Yugoslavia. - Special Publication of the Society for Geology Applied to Mineral Deposits, 1, p. 42-49.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S. - (1984) - Major metallogenic units and ore deposits in Yugoslavia. - Earth Science (Paris) = Sciences de la Terre (Paris), 17, p. 385-394.

Jankovic S. - (1990) - Types of copper deposits related to volcanic environment in the Bor District, Yugoslavia. - Geol. Rundsch, 79, (2), p. 467-478.

Jelenkovic R. and Serafimovski T. - (2000) - The metallogeny of the Carpatho-Balkanides: The Eastern Serbia part. - ABCD-GEODE 2000, Bulgaria, p.32

Karamata S., Knezevic V., Pecskay Z. and Djordjevic M. - (1997) - Magmatism and metallogeny of the Ridanj-Krepoljin belt (eastern Serbia) and their correlation with northern and eastern analogues - Mineralium Deposita, 32, pp. 452-458

Schumacher F. - (1954) - The ore deposits of Jugoslavia and the development of its mining industry - Economic Geology, Vol 49, n° 5, pp. 451-492

Sillitoe RH. - (1980) - The carpathian-Balkan porphyry copper belt. A cordilleran perspective. - European Copper Deposits. Jankovic S and Sillitoe RH (Eds), UNESCO - IGCP Projects N° 169 and 63, Belgrade. p. 26-35.

Economic references

Anonymous. - (1979) - Yugoslavia's metal with a future. - Metal Bulletin Monthly, December 1979, p. 30-36.

Anonymous. - (1982) - Jugoslavija za Rudarstvo. - 11th World Mining Congress, Beograd. 172 p.

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Kozelj D., Petrovic Z., Lakota R., Zivkovic P. and Dordevic D. - (2000) - Computer modelling and ore reserve estimation of the Majdanpek ore deposit in the metallogenic Province of the Carpatho-Balkanides - Proceedings of the International Symposium "Geology and Metallogeny of the Dinarides and the Vardar Zone". The Academy of Sciences and Arts of the Republic of Srpska. The Departement of Natural, Mathematical and Technical Sciences, Vol. 1, pp. 493-503

Lewis A. - (1983) - Yugoslavia's "RTB Bor" copper combine; Europe's largest copper producer eliminates concentrate imports as the new Veliki Krivelj complex reaches capacity. - E&M J, 184, (10), p. 70-74.

Petrovic N. - (1984) - Hidrogeoloske karakteristike juznog revira rudnika bakra "Majdanpek" Translated Title: Hydrogeology in the southern section of the Majdanpek copper mine. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija B: Inzenjerska Geologija i Hidrogeologija, 20, p. 83-96.

Salatic D. - (1999) - Mineral potential and its valorisation in yugoslavia - "VIII Balkan Mineral Processing Conference", 13-18 september 1999, Beograd, 9 p.

Steblez W. - (1998) - Republics of the former Yugoslavia. - Mining Annual Review, 1998, p. 218-221.

Other references

Other data bases

Carte Métallogénique de l'Europe 26-058 The Iron Ore Deposits of Europe - 1978 YU10

Mandre

General data

Deposit name(s): Mandre Identifier: YUG-00216

Commodities: U 0 t Class N/A Status: Primary occurrence of unknown status

Company:

Longitude: 20.316 Latitude: 44.086 District: Moravicki

Geology

Ore deposit type (gitology)

Uraniferous vein, breccia and stratabound disseminated deposits: U, (Mo, Cu, Se, F, Th, REE, Pb, Zn)

Ore deposit shape

Discordant isolated lode with different vein morphologies: tension-gash, bayonet-shaped ("jog"), en echelon, sigmoidal, saddle reef, etc.

Mineralization

Age: Tertiary

Ore mineralogy Host rock mineralogy

Uraninite Ankerite
Pyrite Dolomite
Chalcopyrite Calcite
Tetrahedrite Barite
Marcasite Siderite

Galena Martite Magnetite

Host rocks Age:

Host rock lithology

Undifferentiated metamorphic rock

Graphitic shale

Economy

Exploitation type

Unworked

U Uranium (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Acid generation potential due to the sulfides minerals present in the ore.

Expected concentrations of dissolved U, radionuclides and base metals in the drainage waters.

Radon and gamma radiations.

Comments

Geological references

Klajn D. - (1983) - Uranium hydrothermal mineralization in the Borac-Rudnik Area (Sumadija); possible relation with buried stratiform ore deposits. - Anuarul Institutului de Geologie si Geofizica = Annuaire de l'Institut de Geologie et de Geophysique, 61, p. 199-204.

Economic references

Other references

Markov Kamen

General data

Deposit name(s):Markov KamenIdentifier:YUG-00067Commodities:Cu0 tClassN/AStatus:Old workings

Company:

Longitude: 22.090 Latitude: 43.786 District: Zajecarski

Geology

Ore deposit type (gitology)

Unspecified ore deposit type

Ore deposit shape

Atypical, unspecified or ill-defined form

Age:

Mineralization

Ore mineralogy

Pyrite

Chalcocite

Host rocks Age:

Host rock lithology
Andesite

Economy

Exploitation type

Mining method unkown

Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Cu

Comments

Bor District

Geological references

Jankovic S, Terzic M, Aleksic D, Karamata S, Spasov T, Jovanovic M, Milicic M, Miskovic V, Grubic A, and Antonijevic I. - (1980) - Metallogenic features of copper deposits in the volcano- intrusive complexes of the Bor District, Yugoslavia. - Special Publication of the Society for Geology Applied to Mineral Deposits, 1, p. 42-49.

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-074

Mazic

General data

Deposit name(s): Mazic Identifier: YUG-00119

Commodities: PbZn 0 t Class N/A Status: Deposit or prospect of unknown status

Company: TREPCA Mining and Metallurgical Complex

Longitude: 20.969 Latitude: 42.928 District: Kosovo

Geology

Ore deposit type (gitology)

Replacement deposits (skarns, mantos): Au, Cu, Pb, Zn, Ag, W, Mo, Sn, Fe

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:
Host rocks Age:

Economy

Exploitation type

Unworked

PbZn Lead + Zinc (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

No data.

Comments

Trepca ore field

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Meljenica

General data

Deposit name(s): Meljenica Identifier: YUG-00120

Commodities: PbZn 0 t Class N/A Status: Deposit or prospect of unknown status

Company: TREPCA Mining and Metallurgical Complex

Longitude: 20.923 Latitude: 42.948 District: Kosovo

Geology

Ore deposit type (gitology)

Replacement deposits (skarns, mantos): Au, Cu, Pb, Zn, Ag, W, Mo, Sn, Fe

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age: Tertiary

Host rocks Age:

Economy

Exploitation type

Unworked

PbZn Lead + Zinc (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

No data.

Comments

Trepca ore field

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Mokra Gora

General data

Deposit name(s): Mokra Gora Identifier: YUG-00194

Commodities: Ni 3 500 000 t Class A Status: Dormant deposit

Cr 5 800 000 t *Class* **B Fe** 10 000 000 t *Class* **C**

Company:

Longitude: 19.500 Latitude: 43.801 District: Zlatiborski

Geology

Ore deposit type (gitology)

Residually enriched ore deposits: Fe, Mn, Ni-Co, Au, Pt, P, U, corundum, etc.

Fe and Mn sedimentary deposits: Fe, Mn

Ore deposit shape

Stratabound envelope of disseminated ore

Mineralization Age: Lower/Early Cretaceous

Ore mineralogy Host rock mineralogy

Fe-Chlorite Quartz Hematite Clay

Goethite Magnetite Chromite Millerite Pyrite

Host rocks Age: Lower/Early Cretaceous

Hostrock formation names Host rock lithology

Late cretaceous redeposition - Marine Oolitic limestone, oncoidal limestone

sedimentary

Coarse-grained detrital rock s.l.

Lateritic weathering of ultrabasic rock

Medium- to fine-grained detrital rock

Economy

Exploitation type

Unworked

Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:10000000 tAverage grade:21.47 %

Ni Nickel (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:3500000 tAverage grade:0.705 %

Cr Chrome (Cr2O3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:5800000 tAverage grade:1.16

Environment

Possible particulate and colloidal iron compounds in discharge waters.

Potential Acid Rock Drainage production due to the presence of some sulfides (pyrite, millerite).

Comments

The grade of the ore is very variable : 20-40% Fe, on average 26.5% Fe, 1.3-2% Cr, 0.3-1.3% Ni, up to 0.15% Co and 20-40% SiO2 (Jankovic-1982).

Geological references

Anonymous. - (1978) - The Iron Ore Deposits of Europe and adjacent Areas. - Explanatory Notes to the International Map of the Iron Ore Deposits of Europe, 1:2,500,000. Zitzmann A. Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover. 386 p. Antonijevic I. - (1983) - Lezista gvozda Srbije Translated Title: The iron ore deposits of Serbia. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 41, p. 5-40.

Boev B. and Jankovic S. - (1996) - Nickel and nikeliferous iron deposits of the Vardar Zone (SE Europe) with particular reference to the Rzanovo-Studena Voda ore-bearing series - University "St. Kiril and Metodij" - Skopje. Faculty of Mining and Geology - Stip. Geological Department. Special Issue n° 3, 273 p.

Jankovic S. - (1977) - The iron ore deposits in Yugoslavia. - The iron ore deposits of Europe and adjacent areas; explanatory notes to the International map of the iron ore deposits of Europe, 12,500,000; Volume I, Text and figures. Zitzmann A (Ed), Bundesanst, Geowiss. p. 411-418.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202. Jankovic S. and Jelenkovic R. - (2000) - Metallogeny of the Dinarides - Proceedings of the International Symposium "Geology and Metallogeny of the Dinarides and the Vardar Zone". The Academy of Sciences and Arts of the Republic of Srpska. The Departement of Natural, Mathematical and Technical Sciences, Vol. 1, pp. 281-305

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-069 The Iron Ore Deposits of Europe - 1978 YU11

Morava

General data

Deposit name(s): Morava Identifier: YUG-00143

Commodities: Coal 0 t Class N/A Status: Producing small-scale mine

Company: Rudnik mrkog uglja i lignita JASENOVAC

Longitude: 21.453 Latitude: 44.075 District: Pomoravski

Geology

Ore deposit type (gitology)

Lignite deposits

Coal deposits

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Miocene

Host rocks Age: Miocene

Hostrock formation names

Despotovac Coal Basin

Host rock lithology
Detrital rock s.l.

Bituminous or carbureted rock: clay, claystone, sand, sandstone, limestone, dolomite, etc.

Economy

Exploitation type

Underground mining Longwall mining

Coal Coal, lignite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Potential acid rock drainage with respect of the sulfides content.

Suspended matter in mine water discharge. Large geomorphic modifications of the landscape (pits, gullies, spoil heaps...). Landform instability (collapses) created during and after mining operations.

Comments

The mine is active since 1936. In 1981, the current output was 40,000 t/y and an annual output of 100,000 t/y of brown coal and 60,000 t of lignite was expected for 1985.

The lignite contains up to 35% of moisture and its heating value is up to 12,500 kJ/kg.

Geological references

Cveticanin R. - (1982) - Review of Yugoslav coal basins. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 46-67.

Economic references

Anonymous - (1998) - Electric Power Industry of Serbia - 1998 - EPS, Beograd 1998, 152 p.

Anonymous - (1999) - Electric Power Industry of Serbia - 1999 - EPS, Public Relations Center, Beograd, 56 p.

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Mramor

General data

Deposit name(s): Mramor Identifier: YUG-00169

Commodities: Mg 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 20.000 Latitude: 44.054 District: Zlatiborski

Geology

Ore deposit type (gitology)

Asbestos, talc or magnesite deposits hosted by basic and ultrabasic rocks

Supergene ore deposits

Ore deposit shape

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Miocene

Ore mineralogy

Magnesite (Giobertite)

Host rocks Age:

Hostrock formation names
Maljen - Suvobor ultramafic massif
Serpentinite
Dunite
Harzburgite

Economy

Exploitation type

Mining method unkown

Mg Magnesium, magnesite (MgCO3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Potential contamination of drainage waters by suspended matter.

Comments

Low grade, not economic

Geological references

Fallick AE, Ilich M, and Russell MJ. - (1991) - A stable isotope study of the magnesite deposits associated with the alpine-type ultramafic rocks of Yugoslavia. - Economic Geology and the Bulletin of the Society of Economic Geologists, 86, (4), p. 847-861.

Petrov VP, Vakanjac B, Joksimovic D, Zekic M, and Lapcevic I. - (1980) - Magnesite deposits of Serbia and their origin. - International Geology Review, 22, (5), p. 497-510.

Vakanjac B and Ilich M. - (1980) - Non-metallics in the ultramafites of the ophiolite complex of Yugoslavia. - Ophiolites; International ophiolite symposium. Nicosia, Cyprus. April 1-8, 1979. p. 722-726.

Economic references

Nevade

General data

Deposit name(s): Nevade Identifier: YUG-00159

Commodities: Mg 0 t Class N/A Status: Dormant deposit

Company:

Longitude: 20.495 Latitude: 44.047 District: Moravicki

Geology

Ore deposit type (gitology)

Lacustrine deposits (sebkha, salar, alkaline lake): Li, B, (Na, Mg, Ca, nitrates, sulphates, etc.)

Unspecified volcano-sedimentary and sedimentary-exhalative deposits

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Upper/Late Miocene

Ore mineralogy Host rock mineralogy

Magnesite (Giobertite) Opal

Dolomite Pyrite

Host rocks Age: Upper/Late Miocene

Hostrock formation names Host rock lithology

Gornji Milanovac Miocene series Varved lacustrine sediment

Medium- to fine-grained detrital rock

Pyroclastic deposits s.l.

Latite

Economy

Exploitation type
Unworked

Mg Magnesium, magnesite (MgCO3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Moderate acid generation potential due to the presence of pyrite in the gangue mineralogy and potentially buffered by the magnesite content.

Comments

Resources of about 25 Mt of low-grade ore

Geological references

Fallick AE, Ilich M, and Russell MJ. - (1991) - A stable isotope study of the magnesite deposits associated with the alpine-type ultramafic rocks of Yugoslavia. - Economic Geology and the Bulletin of the Society of Economic Geologists, 86, (4), p. 847-861. Ilic M. - (1976) - Hidrotermalno-sedimentno magnezitsko leziste, Nevade, Gornji Milanovac, SR Srbija Translated Title: Hydrothermal-sedimentary magnesite deposit of Nevade, Gornji Milonovac (western Serbia). - Zbornik Radova Rudarsko Geoloskog Fakulteta, Universitet u Beogradu, 19, p. 307-329.

Economic references

Novakovaca

General data

Deposit name(s): Novakovaca Identifier: YUG-00230

Commodities: Cu 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 19.689 Latitude: 44.169 District:

Geology

Ore deposit type (gitology)

Volcanogenic massive sulphides (VMS) deposits: Cu, Pb, Zn +/- Au-Ag, (Sn, S, As, Cd, Bi, etc.)

Ore deposit shape

Stratabound envelope of disseminated ore

Mineralization

Age: Jurassic

Ore mineralogy

Chalcopyrite
Pyrite
Magnetite

Host rocks Age: Jurassic

Host rock lithology

Dolerite, diabase

Economy

Exploitation type

Mining method unkown

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

High Acid generation potential due to the sulfides minerals contained in the ore. Expected high dissolved and particulate contents of Cu in drainage waters.

Comments

Geological references

Putnik S. - (1981) - Metalogenia bakra jurske dijabaz-roznacke formacije - Metallogenesis of copper in jurassic diabase-chert formation - Geoinstitut. Beograd, 1981. Monographs, vol. 6, 117 p., 2 plates.

Economic references

Novo Brdo Mn

General data

Deposit name(s): Novo Brdo Mn Identifier: YUG-00184

Stara Jama

Commodities: Mn 1 421 440 t Class C Status: Old industrial mine, abandoned deposit

 PbZn
 58 660 t
 Class
 C

 Ag
 59 t
 Class
 E

Company: TREPCA Mining and Metallurgical Complex

Longitude: 21.428 Latitude: 42.620 District: Kosovo

Geology

Ore deposit type (gitology)

Atypical or unspecified high- or low-sulphidation ore deposits

Atypical supergene deposits

Ore deposit shape

Concordant to subconcordant envelope of disseminated ore

Mineralization Age: Tertiary

Ore mineralogy Host rock mineralogy

Manganese oxide (unspecifie Siderite

Manganite Rhodochrosite (Dialoqite)

Psilomelane Calcite
Pyrolusite (Polianite) Dolomite

Iron Oxydes(unspecified)

Chalcophanite Polianite Coronadite Smithsonite Calamine

Host rocks Age:

Economy

Exploitation type

Unworked

Mn Manganese (metal)

Ore type: Oxide/hydroxide ore within the oxidized zone

 Past production:
 - t
 Average grade:
 - %

 Reserve:
 310940 t
 Average grade:
 22.21 %

 Resource:
 1110500 t
 Average grade:
 22.21 %

PbZn Lead + Zinc (metal)

Ore type: Oxide/hydroxide ore within the oxidized zone

Past production:-tAverage grade:-%Reserve:58660 tAverage grade:4.19 %Resource:-tAverage grade:-%

Ag Silver (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-g/tReserve:59 tAverage grade:42 g/tResource:-tAverage grade:-g/t

Environment

Possible high dissolved contents of fe, Mn and Zn in drainage waters.

YUG-00184

Comments

Indicated reserves: 1.4 Mt @ 22.21% Mn, 13.35% Fe, 1.12% Pb, 3.07% Zn and 42 g/t Ag. Inferred reserves: 5 Mt with similar grades.

Geological references

Barjaktarevic D. - (1995) - The revision of the mineral deposit in the ore field Novo Brdo. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Jankovic S. - (1967) - Metalogenetske epohe i rudonosna podrucja jugoslavije. - Beograd, 1967.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Simic M. - (2000) - Metallogeny of the Draznja-Propastica-Novo Brdo ore field in the Vardar Zone - Proceedings of the International Symposium "Geology and Metallogeny of the Dinarides and the Vardar Zone". The Academy of Sciences and Arts of the Republic of Srpska. The Departement of Natural, Mathematical and Technical Sciences, Vol. 1, pp. 409-424

Economic references

Novo Brdo PbZn

General data

Deposit name(s): Novo Brdo PbZn Identifier: YUG-00031

Farbani Potok

Commodities: ClyR 3 000 000 t Class B Status: Dormant deposit

 Pb
 257 130 t
 Class
 B

 Zn
 258 100 t
 Class
 B

 Ag
 973 t
 Class
 C

 Au
 7 t
 Class
 D

Company: TREPCA Mining and Metallurgical Complex

Longitude: 21.420 Latitude: 42.616 District: Kosovo

Geology

Ore deposit type (gitology)

Replacement deposits (skarns, mantos): Au, Cu, Pb, Zn, Ag, W, Mo, Sn, Fe

Volcanic-hosted industrial rock and mineral deposits: bentonite, diatomite, kaolinite, pumice, opal, chalcedony, zeolite, vermiculite, perlite, etc.

Ore deposit shape

Subconcordant or stratabound mass or lens of massive to submassive ore

Mineralization Age: Tertiary

 Ore mineralogy
 Host rock mineralogy
 Hydrothermal alteration

 Sphalerite
 Halloysite
 Advanced argillic alteration

 Galena
 Siderite
 Skarn formation

 Pyrite
 Psilomelane

 Pyrrhotite
 Pyrolusite (Polianite)

Pyrrhotite Pyrolusite (Polianite)
Arsenopyrite Chalcophanite
Chalcopyrite Polianite
Marcasite Coronadite

Grey copper

Host rocks Age: Paleozoic (Primary)

Hostrock formation names Host rock lithology

Paleozoic metamorphites Undifferentiated metamorphic rock
Tertiary andesites Marble, cipolin (crystalline limestone)

Andesite

Economy

Exploitation type

Underground mining

ClyR White-firing clays (refractory & ceramic) (subst.)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:3000000 tAverage grade:-Resource:-tAverage grade:-

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:105000 tAverage grade:2.9 %Reserve:118000 tAverage grade:4.4 %Resource:34130 tAverage grade:0.8 %

Zn	Zinc (metal)				
	Ore type: Ore in which the element forms a distinct mineral phase				
	Past production:	110000 t	Average grade:	3.2	%
	Reserve:	131000 t	Average grade:	4.9	%
	Resource:	17100 t	Average grade:	0.4	%
Ag	Silver (metal)				
	Ore type: Ore of indeterminate nature				
	Past production:	360 t	Average grade:	105	g/t
	Reserve:	366 t	Average grade:	137	g/t
	Resource:	247 t	Average grade:	58	g/t
Au	Gold (metal)				
	Ore type: Ore of indeterminate nature				
	Past production:	- t	Average grade:	-	g/t
	Reserve:	2.9 t	Average grade:	1.1	g/t
	Resource:	4.3 t	Average grade:	1	g/t

Environment

The ore content in sulfides (Pb, Zn and Fe) generate acid and dissolved metals during oxidation.

Acid generation and drainage can affect both surface and groundwater in particular through mine water discharge.

The advanced argillic alteration existing at the mine site decreases acid-buffering capacity and also substantially decreases rock and fracture permeability.

Near the former processing plant, along the river Kriva, pyritic tailings (0.6-1 Mt) is a source of surface water contamination. The existence of an ore processing plant at Gracanica has generated large tailings disposals (15-18Mt) that can be a source of groundwater and surface water contamination.

Comments

In the Middle Ages, the mining activity was very intense and it made Novo Brdo the biggest town in Balkan Peninsula (40,000 inhabitants).

In 1982, the Novo Brdo mine was currently scheduled for expansion to 450,000 t/y of Pb-Zn ore.

During the exploitation at Farbani Potok, a large body of pure halloysite was discovered, the reserves are estimated at 3.0 Mt of halloysite assaying 39-42% Al2O3, 39-43% SiO2 and less than 1% Fe2O3

Farbani Potok: the ore contains 1-5% Pb, 1-8% Zn, about 100 g/t Ag and 3-4 g/t Au

ITT/UNMIK Mission (12/2000): Past production (1964-1997): 3,439,000 t @ 2.9% Pb, 3.2% Zn and 105 g/t Ag. Resources of poly metalic ore: 2,674,000 t @ 4.4% Pb, 4.9% Zn, 137 g/t Ag and 1.1 g/t Au. Resources of pyritic ore: 4,266,000 t @ 0.8% Pb, 0.4% Zn, 58 g/t Ag and 1.0 g/t Au.

Geological references

Barjaktarevic D. - (1995) - Polymetallic mineral phenomenon of Glama silver near by Gnjilane. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Barjaktarevic D. - (1995) - The revision of the mineral deposit in the ore field Novo Brdo. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Barral J.P. - (2001) - Réhabilitation du combinat de Trepca au Kosovo - Revue de la Société de l'Industrie Minérale, IM Environnement, N°12, Avril 2001, pp. 6-10.

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Maksimovic Z and Nikolic D. - (1978) - The primary kaolin deposits of Yugoslavia. - Schriftenreihe fuer Geologische Wissenschaften, 74, 11, p. 179-196.

Schumacher F. - (1954) - The ore deposits of Jugoslavia and the development of its mining industry - Economic Geology, Vol 49, n° 5, pp. 451-492

Simic M. - (2000) - Metallogeny of the Draznja-Propastica-Novo Brdo ore field in the Vardar Zone - Proceedings of the International Symposium "Geology and Metallogeny of the Dinarides and the Vardar Zone". The Academy of Sciences and Arts of the Republic of Srpska. The Departement of Natural, Mathematical and Technical Sciences, Vol. 1, pp. 409-424

Simic V. and Jovic V. - (1997) - Genetic types of kaolin and kaolinite clay deposits in Serbia - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 197-201

Vakanjac B. - (1982) - Geology of deposits of non-metallic minerals and mineral construction materials. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 95-111.

YUG-00031

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Other references

Other data bases

Carte Métallogénique de l'Europe 26-117

Novo Okno

General data

Deposit name(s): Novo Okno Identifier: YUG-00150

Commodities: Cu 0 t Class N/A Status: Deposit of unknown status

Company: Rudarsko Topionicarski Basen BOR

Longitude: 22.106 Latitude: 44.086 District: Borski

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives Unspecified volcano-sedimentary and sedimentary-exhalative deposits

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Stratabound envelope of disseminated ore

Mineralization Age: Upper/Late Cretaceous

Ore mineralogy

Pyrite

Chalcopyrite

Enargite

Covellite

Chalcocite

Bornite

Host rocks

Age: Upper/Late Cretaceous

Hostrock formation names

Timok andesite complex

Host rock lithology

Andesite

Economy

Exploitation type

Mining method unkown

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

High acid generation potential potential due to the sulfide content of the primary ore. Expected high dissolved content of Cu and Fe in drainage water.

Comments

Bor district. Has been in operation since 1983.

Geological references

Jankovic S, Cvetkovic L, Miskovic V, et al. - (1984) - Mineral paragenesis and elements distribution in the ore body "Novo Okno," Bor. - International Geological Congress, Abstracts - Congrès Géologique Internationale, Résumés, p. 304-304.

Jankovic S. - (1990) - Types of copper deposits related to volcanic environment in the Bor District, Yugoslavia. - Geol. Rundsch, 79, (2), p. 467-478.

Jelenkovic R. and Serafimovski T. - (2000) - The metallogeny of the Carpatho-Balkanides: The Eastern Serbia part. - ABCD-GEODE 2000, Bulgaria, p.32

Economic references

Other references

Odorivci

General data

Deposit name(s): Odorivci Identifier: YUG-00081

Commodities: Fe 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 22.900 Latitude: 43.150 District: Pirotski

Geology

Ore deposit type (gitology)

Oolitic iron ore deposits (Clinton, Minette): Fe

Ore deposit shape

Stratabound envelope of disseminated ore

Mineralization Age: Lower/Early Jurassic (Lias)

Ore mineralogy
Hematite

Siderite Iron Oxydes(unspecified)

Host rocks Age: Lower/Early Jurassic (Lias)

Host rock lithology

Limestone

Economy

Exploitation type

Mining method unkown Iron (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Discharge water can have high suspended solids contents enriched in Fe/Mn.

Comments

Geological references

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-101

Osanica

General data

Deposit name(s): Osanica Identifier: YUG-00199

Commodities: Au 0 t Class N/A Status: Deposit of unknown status

 Sb
 0 t
 Class
 N/A

 W
 0 t
 Class
 N/A

Company:

Longitude: 21.660 Latitude: 44.298 District: Branicevski

Geology

Ore deposit type (gitology)

Granitic and peri-granitic veins and stockworks (greisen): Sn-W, (Cu, Bi, Sb, base metals)

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Mineralization Age:

Ore mineralogy Host rock mineralogy

Wolframite Quartz

Stibnite
Pyrite
Marcasite
Scheelite
Gold

Host rocks Age:

Host rock lithology

Granite (s.l.)

Gneiss (s.l.)

Mica schist of sedimentary origin s.l.

Economy

Exploitation type

Mining method unkown

W Wolfram (WO3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Au Gold (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Sb Antimony (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Acid generation potential due to the sulfides minerals contained in the ore. Expected high dissolved contents of base metals and W in surface water.

YUG-00199

Comments

The ore contains 0.5-1.5% WO3 and 3-5% Sb, the wolframite contains 400 g/t of Scandium (Jankovic - 1982)

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202. Jelenkovic R. and Serafimovski T. - (2000) - The metallogeny of the Carpatho-Balkanides: The Eastern Serbia part. - ABCD-GEODE 2000, Bulgaria, p.32

Karamata S., Knezevic V., Pecskay Z. and Djordjevic M. - (1997) - Magmatism and metallogeny of the Ridanj-Krepoljin belt (eastern Serbia) and their correlation with northern and eastern analogues - Mineralium Deposita, 32, pp. 452-458

Economic references

Ostrovica Lojane

General data

Deposit name(s): Ostrovica Lojane Identifier: YUG-00091

Commodities: Cr 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 21.500 Latitude: 42.368 District: Kosovo

Geology

Ore deposit type (gitology)

Ophiolite-hosted ore deposits: Cr, (PGE)

Ore deposit shape

Concordant to subconcordant mass, lens or pod of massive to submassive ore

Mineralization Age:
Ore mineralogy
Chromite

Host rocks Age:

Host rock lithology
Dunite

Peridotite

Economy

Exploitation type

Unworked

Cr Chrome (Cr2O3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

No specific environmental signature according to the data available.

Comments

Grade: 35-42% Cr203

Geological references

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-133

Pasjaca

General data

Deposit name(s): Pasjaca Identifier: YUG-00078

Commodities: Gr 0 t Class N/A Status: Old prospect

Company:

Longitude: 21.583 Latitude: 43.158 District: Topolicki

Geology

Ore deposit type (gitology)

Industrial rocks and minerals related to metamorphic rocks: and alusite group, wollastonite, graphite, etc.

Pegmatites: Sn, Nb-Ta, Li-Be, gemstones, cryolite, mica, etc.

Ore deposit shape

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age

Ore mineralogy

Graphite Quartz Muscovite

Host rocks Age:

Host rock lithology
Pegmatite
Gneiss (s.l.)

Economy

Exploitation type
Unworked

Gr Graphite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Exposed earthen materials at the surface can be an environmental concern due to the erosion-sedimentation process that can threat surface water and ecosystem quality.

Comments

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Vakanjac B. - (1982) - Geology of deposits of non-metallic minerals and mineral construction materials. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 95-111.

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-097

YUG-00078

Pek

General data

Identifier: YUG-00176 Deposit name(s): Pek

Volujski Kljuc

4 t Class Commodities: D Status: Deposit under development - project

Company:

Longitude: 21.761 Latitude: 44.473 District: Branicevski

Geology

Ore deposit type (gitology)

Alluvial-eluvial placers: Au, Pt, Sn, Ti, REE, diamond, gemstones, (Zr, etc.)

Ore deposit shape

Stratabound envelope of disseminated ore

Mineralization Age: Quaternary

Ore mineralogy

Gold Magnetite

Ilmenite Rutile

Titanite

Monazite

Host rocks

Age: Quaternary

Host rock lithology

Alluvium s.l.

Economy

Exploitation type Unworked

Gold (metal)

Ore type: Native-element ore

Past production: 2.2 t g/m3 Average grade: Reserve: t Average grade: g/m3 0.3 g/m3

Resource: 2 t Average grade:

Environment

Few data available to determine an environmental signature.

Comments

Placer 5000 m long, 400-600m wide, layer 2-3m thick, 0.3 g/m3 Au : 2 t gold

Geological references

Jancovic S, Milovanovic D, Jelenkovic R, and Hrkovic K. - (1992) - Gold Deposits and Occurences in Serbia: Types, Metallogenic Units and Outlook. - Chair of Economic geology, Faculty of Mining and Geology, University of Belgrade, Belgrade. 285 p. Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202. Schumacher F. - (1954) - The ore deposits of Jugoslavia and the development of its mining industry - Economic Geology, Vol 49, n°5, pp. 451-492

Economic references

YUG-00176

Petkovic

General data

Deposit name(s): Petkovic Identifier: YUG-00126

Commodities: Co 0 t Class N/A Status: Deposit of unknown status

 Cu
 0 t
 Class
 N/A

 Ni
 0 t
 Class
 N/A

Company:

Longitude: 20.659 Latitude: 42.422 District: Kosovo

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to basic-ultrabasic magmatic rocks

Fault-related ore deposits in a magmatic context: Cu, As-Co-Cu-Ni-Ag-Bi

Ore deposit shape

Discordant mass or lens of massive to submassive ore

Discordant envelope of disseminated ore

Mineralization Age:

Ore mineralogy

Chalcopyrite

Pyrrhotite

Pentlandite

Skutterudite

Breithauptite

Rammelsbergite

Cubanite

Sphalerite

Valleriite

Magnetite

Chromite

Niccolite

Chloanthite

Millerite

Pyrite

Bornite Chalcocite

Gold

Host rocks Age:

Hostrock formation names Host rock lithology

Orahovac Peridotite Complex Basic to ultrabasic rock s.l.

Peridotite Pyroxenite

Amphibolite (s.l.)

Serpentinite

Economy

Exploitation type

Unworked

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: - t Average grade:

Reserve: - t Average grade: - Resource: - t Average grade: -

Ni Nickel (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:

Reserve:

- t

Average grade:

- Average grade:

Resource: - t Average grade:

Co Cobalt (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Acid generation potential due to the sulfidic ore composition.

Potential release of dissolved metals (Fe, Cu, Zn, Ni, Co,..) into the drainage water with possible concentration in stream sediments.

Presence of arsenites ans sulfoarsenites that may release As into the environment with particular concentration in the sream sediments.

Comments

Massive ore contains 1-2.5% Cu, 0.2-0.4% Ni, 0.1-0.25% Co, while disseminated ore contains 0.25% Cu, 0.3% Ni and 0.15% Co.

Geological references

Jankovic S and Putnik S. - (1980) - Copper deposits in the Southeastern Europe connected with the ophiolite complexes. - European Copper Deposits. Jankovic S and Sillitoe RH (Eds), UNESCO - IGCP Projects, Belgrade. p. 117-123. Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Picelj

General data

Deposit name(s): Picelj Identifier: YUG-00117

Commodities: Asb 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 20.985 Latitude: 42.975 District: Kosovo

Geology

Ore deposit type (gitology)

Asbestos, talc or magnesite deposits hosted by basic and ultrabasic rocks

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:

Ore mineralogy

Chrysotile (Clino-, Ortho-, Par

Host rocks Age:

Hostrock formation names Host rock lithology

Kopaonik ultramafite mass Basic to ultrabasic rock s.l.

Serpentinite Peridotite s.l.

Economy

Exploitation type

Mining method unkown

Asb Asbestos (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Emission of particulate matters in the form of fugitive dust.

The dust mainly composed of fibrous minerals can be inhaled by people and thus may induce hillnesses.

Comments

Located in Kopaonik mountains

Geological references

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Vakanjac B and Ilich M. - (1980) - Non-metallics in the ultramafites of the ophiolite complex of Yugoslavia. - Ophiolites; International ophiolite symposium. Nicosia, Cyprus. April 1-8, 1979. p. 722-726.

Economic references

Piskanja

General data

Deposit name(s): Piskanja Identifier: YUG-00137

Pobrdjski Potok

Commodities: Bor 2 600 000 t Class C Status: Deposit under development - project

Company: Ras-Borati Ltd

Longitude: 20.663 Latitude: 43.375 District: Raski

Geology

Ore deposit type (gitology)

Lacustrine deposits (sebkha, salar, alkaline lake): Li, B, (Na, Mg, Ca, nitrates, sulphates, etc.)

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Miocene

Ore mineralogy
Colemanite

Host rock mineralogy
Magnesite (Giobertite)

Dolomite

Host rocks Age: Miocene

Hostrock formation names Host rock lithology

Jarando Miocene basin Carbonaceous rock: clay, sandstone,

etc.

Varved lacustrine sediment

Economy

Exploitation type
Unworked

Bor Borates (B2O3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:-tAverage grade:-%Resource:2600000 tAverage grade:37 %

Environment

Potential contamination of drainage waters by Bore coumpounds.

Comments

Ras-Borati Ltd: joint venture between Serbia's Elektroprivredna and Canada's Erin Ventures Inc.

In 1997, the partners plan to complete 15,000 m drilling programme to prove 7 Mt @ 35-39% B2O3.

The ore include Colemanite and Howlite (2SiO2, 4CaO, 5B2O3, 5H2O).

Geological references

Dedic L., Mozina A., Radulovic P., Joksimovic D. and Jovovic M. - (1995) - Non metalic sources deposit of the Kopaonik area. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Joksimovic D., Anicic S., Stefanovska D. and Seke L. - (1995) - Potential from mineral sources of neogene basin Jarandol. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Obradovic J, Stamatakis MG, Anicic S, and Economou GS. - (1992) - Borate and borosilicate deposits in the Miocene Jarandol Basin, Serbia, Yugoslavia. - Economic Geology and the Bulletin of the Society of Economic Geologists, 87, (8), p. 2169-2174.

Economic references

Steblez W. - (1998) - Republics of the former Yugoslavia. - Mining Annual Review, 1998, p. 218-221.

Other references

Popina

General data

Deposit name(s): Popina Identifier: YUG-00210

Commodities: Agt 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 20.947 Latitude: 43.603 District: Rasinski

Geology

Ore deposit type (gitology)

Atypical supergene deposits

Unspecified ore deposits related to basic-ultrabasic magmatic rocks

Ore deposit shape

Tabular-shaped orebody of secondary origin

Mineralization Age:

Ore mineralogy Host rock mineralogy

Opal Quartz

Chalcedony

Host rocks Age: Neogene (Miocene to Pliocene)

Host rock lithology

Coarse-grained detrital rock s.s. Basic to ultrabasic rock s.l.

Economy

Exploitation type
Unworked

Agt Agata, chalcedony, jasper (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Possible contamination of surface water by suspended matter.

Comments

Geological references

Ilic M. - (1998) - Gem raw materials and their occurrence in Serbia - Juvelirske mineralne sirovine i njihova nalazista u Srbiji - Beograd, Univerzitet, Rudarsko-geoloski fakultet, 140 p.

Economic references

Popovac

General data

Deposit name(s): Popovac Identifier: YUG-00223

Commodities: LstC 0 t Class N/A Status: Producing industrial mine

Company: Fabrica cementa NOVI POPOVAC

Longitude: 21.509 Latitude: 43.923 District: Pomoravski

Geology

Ore deposit type (gitology)

Sedimentary-related industrial rocks and minerals: Clays, limestones, dolomite, calcite, siliceous sand,

quartzite, etc.

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age:

Host rocks Age: Jurassic

Host rock lithology
Limestone
Marl

Economy

Exploitation type

Surface mining

LstC Cement limestone (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:

Reserve:

- t

Average grade:

- t

Average grade:

-

Resource: - t Average grade:

Environment

Dust production and fallout.

Geomorphic modifications in the landscape (quarry).

Comments

Production 1990: 770 kt

2 deposits : Marl : Tresnja, and limestone : Cokoce

Geological references

llich M. - (1991) - Yugoslavian cement. Raw materials and production - Industrial Minerals, november 1991, pp. 59-61

Economic references

Postojka Coka

General data

Deposit name(s): Postojka Coka Identifier: YUG-00164

Commodities: Qtz 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 21.843 Latitude: 44.387 District: Borski

Geology

Ore deposit type (gitology)

Industrial rocks and minerals related to plutonic rocks: ornamental stones, feldspar, nepheline, etc.

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Mineralization Age:

Ore mineralogy
Quartz

Quart

Host rocks Age:

Hostrock formation names

Neresnica Pluton

Host rock lithology
Granite (s.l.)

Economy

Exploitation type

Unworked

Qtz Massive quartz, blocks for ferrosilicon (SiO2)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

No specific environmental signature.

Comments

Geological references

Rubezanin D. - (1978) - Kvarcne stene Postojka coke kod Neresnice Translated Title: The quartz deposits of Postojka Coka, Neresnica. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 35-36, p. 7-18.

Economic references

Pozega

General data

Deposit name(s): Pozega Identifier: YUG-00068

Commodities: Mn 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 20.038 Latitude: 43.846 District: Zlatiborski

Geology

Ore deposit type (gitology)

Unspecified ore deposit type

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:
Host rocks Age:

Economy

Exploitation type

Mining method unkown

Mn Manganese (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Comments

Geological references

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-076

Radejna

General data

Deposit name(s): Radejna Identifier: YUG-00106

Vidlic

Commodities: Fe 1 050 000 t Class D Status: Deposit or prospect of unknown status

Company:

Longitude: 22.833 Latitude: 43.032 District: Pirotski

Geology

Ore deposit type (gitology)

Oolitic iron ore deposits (Clinton, Minette): Fe

Ore deposit shape

Stratabound bed (single or multi-layered)

Mineralization Age: Lower/Early Jurassic (Lias)

Ore mineralogy
Goethite
Hematite

Iron Oxydes(unspecified)

Host rocks Age: Lower/Early Jurassic (Lias)

Host rock lithology
Sedimentary rock

Economy

Exploitation type

Unworked

Ore type: Ore in which the element forms a distinct mineral phase

Past production:- tAverage grade:- %Reserve:525000 tAverage grade:35 %Resource:525000 tAverage grade:35 %

Environment

Fe

Drainage water with suspended solids content enriched in Fe/Mn.

Comments

Reserves C1: 1.5 Mt @ 35% Fe and C2: 1.5 Mt.

Geological references

Anonymous. - (1978) - The Iron Ore Deposits of Europe and adjacent Areas. - Explanatory Notes to the International Map of the Iron Ore Deposits of Europe, 1:2,500,000. Zitzmann A. Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover. 386 p. Jankovic S. - (1977) - The iron ore deposits in Yugoslavia. - The iron ore deposits of Europe and adjacent areas; explanatory notes to the International map of the iron ore deposits of Europe, 12,500,000; Volume I, Text and figures. Zitzmann A (Ed), Bundesanst, Geowiss. p. 411-418.

Economic references

Other references

Other data bases

The Iron Ore Deposits of Europe - 1978 YU26

Radocelo

General data

Deposit name(s): Radocelo Identifier: YUG-00109

Perisin Potok

Commodities: Fe 0 t Class N/A Status: Deposit of unknown status

Ni 0 t Class N/A

Company:

Longitude: 20.442 Latitude: 43.469 District: Raski

Geology

Ore deposit type (gitology)

Laterite-related ore deposits: Fe, Mn, Ni-Co, Au, Pt, corundum, P, REE, Nb, etc.

Fe and Mn sedimentary deposits: Fe, Mn

Ore deposit shape

Stratabound envelope of disseminated ore

Mineralization Age:

Ore mineralogy

Hematite

Magnetite

Chromite

Pyrite

Host rocks Age: Mesozoic (Secondary)

Hostrock formation names Host rock lithology

Permo-Triassic Studenica series Undifferentiated metamorphic rock

Serpentinite

Economy

Exploitation type

Mining method unkown

Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Ni Nickel (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Acid generation potential due to the presence of pyrite. The existence of chromite in a lateritic context may lead to the release of hexavalent chromium (toxic form of Chromium) into the environment .

Comments

The ore contains 40-50% Fe, 1.3 to 2% Cr, up to 0.8% Ni, less than 0.1% S and P and 8-15% SiO2.

Geological references

Antonijevic I. - (1983) - Lezista gvozda Srbije Translated Title: The iron ore deposits of Serbia. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 41, p. 5-40.

YUG-00109

Jankovic S. - (1977) - The iron ore deposits in Yugoslavia. - The iron ore deposits of Europe and adjacent areas; explanatory notes to the International map of the iron ore deposits of Europe, 12,500,000; Volume I, Text and figures. Zitzmann A (Ed), Bundesanst, Geowiss. p. 411-418.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Maksimovic Z., Panto G., Nagy G.and Popovic R. - (2000) - Metamorphosed Paleozoic serpentinites with metamorphosed weathering crust and reworked Ni-Fe ore in Radocelo Mt., Serbia - Proceedings of the International Symposium "Geology and Metallogeny of the Dinarides and the Vardar Zone". The Academy of Sciences and Arts of the Republic of Srpska. The Departement of Natural, Mathematical and Technical Sciences, Vol. 1, pp. 313-321

Economic references

Rajiceva Gora

General data

Deposit name(s): Rajiceva Gora Identifier: YUG-00110

Commodities: Sb 33 600 t Class B Status: Deposit of unknown status

 PbZn
 15 000 t
 Class D

 As
 0 t
 Class N/A

 Au
 0 t
 Class N/A

Company: Zajaca - Rudarsko - Topionicarski Basen

Longitude: 20.929 Latitude: 43.156 District: Rasinski

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives Ore deposits of basic to ultrabasic affinity: Hg, Sb, As, (Co, Ni, Au, Ag, Cu, Zn)

Ore deposit shape

Stratabound envelope of disseminated ore Discordant envelope of disseminated ore

Mineralization Age: Neogene (Miocene to Pliocene)

 Ore mineralogy
 Host rock mineralogy
 Hydrothermal alteration

 Stibnite
 Quartz
 Silicification

Galena Chalcedony
Sphalerite Calcite
Realgar Barite

Pyrite
Marcasite
Arsenopyrite
Pyrrhotite
Bravoite
Bournonite
Boulangerite
Jamesonite
Grey copper
Chalcopyrite
Millerite
Orpiment
Cinnabar
Gold

Host rocks Age:

Hostrock formation names

Contact Serpentinite - Upper Cretaceous

Serpentinite

sh Volcaniclastic rocks: pyroclastic rocks, volcaniclastic (volcano-detrital

volcaniclastic (volcano-detrital, volcano-sedimentary) rocks

Latite Listwaenite

Economy

Exploitation type

Underground mining

PbZn Lead + Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:15000 tAverage grade:0.5 %Resource:-tAverage grade:-%

Sb Antimony (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:33600 tAverage grade:1.12 %Resource:-tAverage grade:-%

As Arsenic (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Au Gold (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or refractory elem

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

High acid generation potential due to the sulfidic composition of the primary ore.

The hydrothermal alteration type (silica) tends to deacrease acid-buffering capacity of the host-rocks. Moreover, the presence of sulfosalts (sulfoarsenites) and cinnabar tends to release, when oxydized, elements like As and Hg into the environment. Those elements, when accumulated in the natural receptors (like soils or stream sediments) are toxic for human health and ecosystems.

No information related to mine waste deposits as well as to tailings which are potential sources of contaminants in the form of particulates and dissolved metals.

Comments

Data in Laznicka P. (1985) p 999 : 10 Mt ore Reserves : 3 Mt @ 1.12% Sb, 0.5% PbZn, 0.24% As

Geological references

Jancovic S, Mozgova NN, and Borodaev YS. - (1977) - The complex antimony-lead/ zinc deposit at Rujevac/ Yugoslavia; its specific geochemical and mineralogical features. - Mineralium Deposita, 12, (3), p. 381-392.

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S and Zaric P. - (1980) - Metalogenetske odlike Sb-mineralizacije na jugoisticnom Kopaoniku (Rudno polje Rajiceva Gora) Translated Title: Metallogenic features of the antimony mineralization in the Rajiceva Gora Deposit, southeastern Kopaonik, Yugoslavia. - Zbornik Radova Rudarsko Geoloskog Fakulteta, Universitet u Beogradu, 22, p. 43-56.

Jankovic S. - (1979) - Antimony deposits in south-eastern Europe. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 37, p. 25-48.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Ramaca

General data

Deposit name(s): Ramaca Identifier: YUG-00207

Commodities: Agt 0 t Class N/A

Status: Dormant deposit

Company:

Longitude: 20.681 Latitude: 44.111 District: Sumadijski

Geology

Ore deposit type (gitology)

Atypical supergene deposits

Supergene industrial rock and mineral deposits: clays, kaolin, silica sand, etc.

Ore deposit shape

Tabular-shaped orebody of secondary origin

Mineralization Age:

Ore mineralogy

Opal

Chalcedony

Host rocks Age:

Host rock lithology
Serpentinite
Ultrabasic rock

Economy

Exploitation type

Unworked

Agt Agata, chalcedony, jasper (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Possible contamination of surface water by suspended matter.

Comments

Geological references

Ilic M. - (1998) - Gem raw materials and their occurrence in Serbia - Juvelirske mineralne sirovine i njihova nalazista u Srbiji - Beograd, Univerzitet, Rudarsko-geoloski fakultet, 140 p.

Economic references

Rastiste

General data

Deposit name(s): Rastiste Identifier: YUG-00193

Commodities: Ti 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 19.363 Latitude: 43.935 District: Zlatiborski

Geology

Ore deposit type (gitology)

Gabbro-norite hosted deposits of disseminated titano-magnetite: Fe, Ti, (V, P)

Ore deposit shape

Stratabound envelope of disseminated ore

Mineralization Age:

Ore mineralogy

Magnetite
Titanomagnetite
Ilmenite

Host rocks Age:

Host rock lithology

Gabbro Serpentinite

Peridotite

Economy

Exploitation type

Unworked

Ti Titanium, general (TiO2)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:

Reserve:

- t

Average grade:

- t

Average grade:

Resource: - t Average grade:

Environment

No specific environmental signature.

Comments

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Razhana

General data

Deposit name(s): Razhana Identifier: YUG-00168

Commodities: Mg 0 t Class N/A Status: Old industrial mine, exhausted deposit

Company:

Longitude: 19.944 Latitude: 44.081 District: Zlatiborski

Geology

Ore deposit type (gitology)

Asbestos, talc or magnesite deposits hosted by basic and ultrabasic rocks

Supergene ore deposits

Ore deposit shape

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Cenozoic

Ore mineralogy

Magnesite (Giobertite)

Host rocks Age:

Hostrock formation names

Maljen - Suvobor ultramafic massif

Serpentinite

Harzburgite

Economy

Exploitation type

Mining method unkown

Mg Magnesium, magnesite (MgCO3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Potential contamination of drainage waters by suspended matter.

Comments

Geological references

Fallick AE, Ilich M, and Russell MJ. - (1991) - A stable isotope study of the magnesite deposits associated with the alpine-type ultramafic rocks of Yugoslavia. - Economic Geology and the Bulletin of the Society of Economic Geologists, 86, (4), p. 847-861.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Petrov VP, Vakanjac B, Joksimovic D, Zekic M, and Lapcevic I. - (1980) - Magnesite deposits of Serbia and their origin. - International Geology Review, 22, (5), p. 497-510.

Vakanjac B and Ilich M. - (1980) - Non-metallics in the ultramafites of the ophiolite complex of Yugoslavia. - Ophiolites; International ophiolite symposium. Nicosia, Cyprus. April 1-8, 1979. p. 722-726.

Economic references

Rembas

General data

Deposit name(s): Rembas Identifier: YUG-00144

Resavica

Commodities: Coal 0 t Class N/A Status: Producing small-scale mine

Company: Rudnik mrkog uglja REMBAS - EPS

Longitude: 21.600 Latitude: 44.016 District: Pomoravski

Geology

Ore deposit type (gitology)

Coal deposits

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Miocene

Host rocks Age: Miocene

Hostrock formation names

Resava Morava Coal Basin

Host rock lithology

Detrital rock s.l.

Economy

Exploitation type

Underground mining

Coal Coal, lignite (substance)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Potential acid rock drainage with respect of the sulfides content.

Suspended matter in mine water discharge.

Large geomorphic modifications of the landscape (pits, gullies, spoil heaps...).

Landform instability (collapses) created during and after mining operations.

Comments

In 1981, the coal was mined by operations Senjski Rudnik, Vodna, Resavica and Jasenovac. An output of 736,000 t/y was expected.

The coal heating value ranges from 14,000 to 21,000 kJ, moisture is about 18%, ash 16% and sulphur below 1%.

Geological references

Cveticanin R. - (1982) - Review of Yugoslav coal basins. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 46-67.

Economic references

Anonymous - (1998) - Electric Power Industry of Serbia - 1998 - EPS, Beograd 1998, 152 p.

Anonymous - (1999) - Electric Power Industry of Serbia - 1999 - EPS, Public Relations Center, Beograd, 56 p.

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Reskovica

General data

Deposit name(s): Reskovica Identifier: YUG-00060

Commodities: Cu 0 t Class N/A Status: Deposit or prospect of unknown status

PbZn 0 t Class N/A

Company:

Longitude: 21.624 Latitude: 44.253 District: Branicevski

Geology

Ore deposit type (gitology)

Pb-Zn-Ag skarns and stratiform mantos: Pb, Zn, Ag, (Au)

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:

 Ore mineralogy
 Hydrothermal alteration

 Sphalerite
 Skarn formation

Sphalerite
Galena
Chalcopyrite
Magnetite
Cosalite

Cosalite Molybdenite Scheelite

Host rocks Age:

Economy

Exploitation type

Mining method unkown

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

PbZn Lead + Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

The primary mineralization is mainly composed of sulfides whose oxidation generates acid, ferric iron and dissolved metals (Pb, Zn, Cu...) that can affect drainage water, soils and stream sediments.

Comments

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202. Jelenkovic R. and Serafimovski T. - (2000) - The metallogeny of the Carpatho-Balkanides: The Eastern Serbia part. - ABCD-GEODE 2000, Bulgaria, p.32

Karamata S., Knezevic V., Pecskay Z. and Djordjevic M. - (1997) - Magmatism and metallogeny of the Ridanj-Krepoljin belt (eastern Serbia) and their correlation with northern and eastern analogues - Mineralium Deposita, 32, pp. 452-458

YUG-00060

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe

26-060

Rgotina

General data

Deposit name(s): Rgotina Identifier: YUG-00148

Commodities: Silc 0 t Class N/A Status: Producing industrial mine

Company: Radna Organizacija R. Kvarnog Peska Kvarc-Rgotina

Longitude: 22.262 Latitude: 44.007 District: Zajecarski

Geology

Ore deposit type (gitology)

Sedimentary-related industrial rocks and minerals: Clays, limestones, dolomite, calcite, siliceous sand,

quartzite, etc.

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Miocene

Host rocks Age: Miocene

Host rock lithology

Sand

Economy

Exploitation type
Surface mining

Silc Silica, silica sand (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Potential contamination of drainage water with suspended matter.

Potential geomorphic modifications of the landscape.

Comments

2 opencast mines were operative in 1982 : Velika Poljana and Oblaci with a content of SiO2 between 93-99% after washing. Exploited by open pit since 1905.

During 1972-1976, the annual production varied between 150,000 and 220,000 t for the glass and smelting industries and 100,000 t for the building industry.

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Ridanj

General data

Deposit name(s): Ridanj Identifier: YUG-00055

Commodities: Fe 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 21.685 Latitude: 44.632 District: Branicevski

Geology

Ore deposit type (gitology)

Fe (magnetite) skarns: Fe, (Co)

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:

Ore mineralogy

Magnetite Pyrite

Pyrrhotite Chalcopyrite

Host rocks Age:

Economy

Exploitation type

Mining method unkown

Fe Iron (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

The associated sulfide minerals assemblage can produce Acid Mine Drainage, source of potential impacts on surface water, groundwater, soils and stream sediments.

Comments

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202. Jelenkovic R. and Serafimovski T. - (2000) - The metallogeny of the Carpatho-Balkanides: The Eastern Serbia part. - ABCD-GEODE 2000, Bulgaria, p.32

Karamata S., Knezevic V., Pecskay Z. and Djordjevic M. - (1997) - Magmatism and metallogeny of the Ridanj-Krepoljin belt (eastern Serbia) and their correlation with northern and eastern analogues - Mineralium Deposita, 32, pp. 452-458

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-055

Rogozna

General data

Deposit name(s): Rogozna Identifier: YUG-00160

Kasaljska Reka

Commodities: PbZn 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 20.634 Latitude: 43.034 District: Raski

Geology

Ore deposit type (gitology)

Atypical or unspecified ore deposits associated with acid and alkaline plutonic rocks Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:
Host rocks Age:

Economy

Exploitation type

Unworked

PbZn Lead + Zinc (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

No data available.

Comments

S-SW of Crnac, limit with Kosovo

Geological references

Jankovic S. - (1978) - Izotopni sastav olova u pojedinim tertsijarnim olovo-tsinkovim rudishtima Srpsko-makedonske metalogenetske provintsije Translated Title: The isotopic composition of lead in some Tertiary lead-zinc deposits within the Serbo-Macedonian metallogenic province - Geoloshki Anali Balkanskoga Poluostrva, 42, p. 507-525.

Economic references

Rudjinci

General data

Deposit name(s): Rudjinci Identifier: YUG-00182

Commodities: Co 7 000 t Class C Status: Dormant deposit

Ni 161 000 t *Class* C

Company:

Longitude: 20.888 Latitude: 43.598 District: Raski

Geology

Ore deposit type (gitology)

Laterite-related ore deposits: Fe, Mn, Ni-Co, Au, Pt, corundum, P, REE, Nb, etc.

Ore deposit shape

Stratabound envelope of disseminated ore

Mineralization Age:

Ore mineralogy Host rock mineralogy

Nontronite Silica

Magnesite (Giobertite)

Montmorillonite

Pyrite

Bravoite

Millerite

Stibnite

Cinnabar

Host rocks Age:

Host rock lithology

Serpentinite

Peridotite

Economy

Exploitation type

Unworked

Ni Nickel (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:-tAverage grade:-%

Resource: 161000 t Average grade: 1.15 %

Co Cobalt (metal)

Ore type: Ore of indeterminate nature

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:7000 tAverage grade:0.05 %

Environment

Acid generation potential due to the presence of pyrite.

Possible contamination of drainage waters by high content of suspended matter, and by dissolved metals such as Ni, Sb and possibly Hg.

Comments

Veluce-Rudjinci Ore Field (Boev and Jankovic - 1996): Exploration carried out determined possible ore reserves of 14 Mt @ 1.15% Ni and 0.05% Co.

2 orebodies: Orlovac and Ravno Bucje.

Geological references

Boev B. and Jankovic S. - (1996) - Nickel and nikeliferous iron deposits of the Vardar Zone (SE Europe) with particular reference to the Rzanovo-Studena Voda ore-bearing series - University "St. Kiril and Metodij" - Skopje. Faculty of Mining and Geology - Stip. Geological Department. Special Issue n° 3, 273 p.

Economic references

Rudna Glava

General data

Identifier: YUG-00101 Deposit name(s): Rudna Glava

870 000 t Fe Class Ε Status: Old industrial mine, abandoned deposit Commodities:

> 0 t Au Class N/A 0 t Cu N/A Class

Company:

22.094 Latitude: 44.333 District: Borski Longitude:

Geology

Ore deposit type (gitology)

Fe (magnetite) skarns: Fe, (Co)

Ore deposit shape

Discordant mass or lens of massive to submassive ore

Mineralization Age: Lower/Early Carboniferous

(Dinantian, Tournaisian+Visean,

Lower/Early Namurian)

Ore mineralogy Host rock mineralogy Hydrothermal alteration Skarn formation Magnetite Garnet

Chalcopyrite Pyroxene Pyrrhotite Chlorite Molybdenite **Epidote** Scheelite Quartz Smaltite

Host rocks Age: Paleozoic (Primary)

Hostrock formation names Host rock lithology

Gornjanski granodiorite Marble, cipolin (crystalline limestone)

> Granodiorite Quartz gabbro Skarn

Economy

Exploitation type

Mining method unkown

Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: 350000 t Average grade: % Reserve: 520000 t 42 % Average grade: Resource: Average grade: %

Au Gold (metal)

Ore type: Ore of indeterminate nature

Past production: Average grade: Reserve: t Average grade: Resource: t Average grade:

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: Average grade: t Reserve: Average grade: Resource: t Average grade:

Environment

Acid mine drainage potential due to the primary ore composition enriched in sulfides like chalcopyrite and pyrrhotite.

Comments

Old mine (4500 B.C.) for Cu and probably gold Fe mine from 1935-1963
Ore: 42% Fe, 0.1-0.6% Cu and 0.38-0.94% Cr.

Geological references

Anonymous. - (1978) - The Iron Ore Deposits of Europe and adjacent Areas. - Explanatory Notes to the International Map of the Iron Ore Deposits of Europe, 1:2,500,000. Zitzmann A. Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover. 386 p. Antonijevic I. - (1983) - Lezista gvozda Srbije Translated Title: The iron ore deposits of Serbia. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 41, p. 5-40.

Jankovic S. - (1977) - The iron ore deposits in Yugoslavia. - The iron ore deposits of Europe and adjacent areas; explanatory notes to the International map of the iron ore deposits of Europe, 12,500,000; Volume I, Text and figures. Zitzmann A (Ed), Bundesanst, Geowiss. p. 411-418.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202. Jelenkovic R. and Serafimovski T. - (2000) - The metallogeny of the Carpatho-Balkanides: The Eastern Serbia part. - ABCD-GEODE 2000, Bulgaria, p.32

Economic references

Other references

Other data bases
The Iron Ore Deposits of Europe - 1978 YU14

Rudnik

General data

Deposit name(s): Rudnik Identifier: YUG-00052

Commodities: Pb 133 000 t Class B Status: Producing industrial mine

 Ag
 525 t
 Class
 C

 Zn
 126 000 t
 Class
 C

 Cu
 21 000 t
 Class
 D

 Bi
 0 t
 Class
 N/A

Company: DP Rudnik i Flotacija Rudnik

Longitude: 20.512 Latitude: 44.140 District: Sumadijski

Geology

Ore deposit type (gitology)

Pb-Zn-Ag skarns and stratiform mantos: Pb, Zn, Ag, (Au)

Ore deposit shape

Subconcordant or stratabound mass or lens of massive to submassive ore

Discordant lode or vein (thickness > 50 cm), in clusters or isolated

Mineralization Age: Cenozoic

 Ore mineralogy
 Host rock mineralogy
 Hydrothermal alteration

 Galena
 Barite
 Skarn formation

 Sphalerite
 Quartz
 Silicification

 Chalcopyrite
 Calcite
 Kaolinization

 Cubanite
 Valleriite

Valleriite
Breithauptite
Maucherite
Millerite
Pyrrhotite
Pyrite
Linnaeite
Grey copper
Bournonite

Host rocks Age: Cretaceous

Hostrock formation names
Cretaceous sediments
Limestone
late Tertiary dikes and stocks andesites
dacites
Andesite
Quartz diorite

Economy

Exploitation type

Sublevel stoping

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:133000 tAverage grade:1.9 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Zn Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:126000 tAverage grade:1.8 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:21000 tAverage grade:0.3 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Ag Silver (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or refractory elem

Past production:525 tAverage grade:75 g/tReserve:- tAverage grade:- g/tResource:- tAverage grade:- g/t

Bi Bismuth (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or refractory elem

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

The primary mineralization is mainly composed of sulfides whose oxidation generates acid, ferric iron and dissolved metals (Pb, Zn, Cu...) that can affect drainage water, soils and stream sediments.

The potential acid mine drainage generated is buffered by the gangue mineralogy (carbonates) which are acid-consuming minerals. The host rock assemblage (limestone) which alters to calc-silicates decrease acid-buffering capacity.

The information related to mine waste deposits as well as to tailings which are potential sources of contaminants in the form of particulates and dissolved metals, indicates the existence of 7 Mt of active tailings (still high content in pyrite and pyrrhotite) in Rudnik.

Comments

In 1982, current annual output was about 200,000 t of ore.

Metal content differs from one orebody to another, ranging from 0.36 to 7.36% Pb, 0.32 to 5.68% Zn and 0.15 to 1.19% Cu, also with Ag (25 to 155 g/t), Bi (13 to 698 g/t) and Cd (50 to 272 g/t) in the galena concentrate.

Modern mining started in 1952.

Nov 2001- Visit J.Monthel: 7 Mt of tailings with 25-30% pyrite-pyrrhotite, Annual production: 205,000t of ore containing about 3100 t of Pb, 3100t of Zn and 340t Cu. Grade of the ore during 2001: 1.9% Pb, 1.8% Zn, 0.3% Cu and 75 g/t Ag. Presence of Au and possibility of Pt/Pd minerals.

Geological references

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S. - (1984) - Major metallogenic units and ore deposits in Yugoslavia. - Earth Science (Paris) = Sciences de la Terre (Paris), 17, p. 385-394.

Jelenkovic R., Serafimovski T. and Lazarov P. - (1997) - Uranium Mineralization in the Serbo-Macedonian Massif and the Vardar Zone: Types and Distribution Pattern - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 149-157

Schumacher F. - (1954) - The ore deposits of Jugoslavia and the development of its mining industry - Economic Geology, Vol 49, n° 5, pp. 451-492

Tosovic R.D. - (2000) - Evolution of the ore process formation in the polymetallic Rudnic deposit (Vardar Zone) - Proceedings of the International Symposium "Geology and Metallogeny of the Dinarides and the Vardar Zone". The Academy of Sciences and Arts of the Republic of Srpska. The Department of Natural, Mathematical and Technical Sciences, Vol. 1, pp. 463-468

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Other references

Other data bases

Carte Métallogénique de l'Europe 26-052

Rudovci

General data

Deposit name(s): Rudovci Identifier: YUG-00149

Commodities: ClyR 0 t Class N/A Status: Producing industrial mine

Kin 0 t Class N/A

Company: Ro Samot Rudnici Vatrostalnih Glina

Longitude: 20.461 Latitude: 44.354 District: Sumadijski

Geology

Ore deposit type (gitology)

Sedimentary-related industrial rocks and minerals: Clays, limestones, dolomite, calcite, siliceous sand,

quartzite, etc.

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Pliocene

Ore mineralogy
Kaolin
Illite

Host rocks Age: Pliocene

Hostrock formation names Host rock lithology

Arandelovac and Kolubara basins

Bituminous or carbureted rock: clay, claystone, sand, sandstone,

limestone, dolomite, etc.

Economy

Exploitation type

Surface mining Underground mining

ClyR White-firing clays (refractory & ceramic) (subst.)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

KIn Kaolin (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Potential contamination of drainage water with suspended matter.

Potential geomorphic modifications of the landscape.

Comments

In 1981, the output was about 230,000 t/y and expected at 320,000 t/y in 1985. Pits name: Svabinac, Lazine, Rudovci, Krusik and Vrbica.

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202. Simic V. and Jovic V. - (1997) - Genetic types of kaolin and kaolinite clay deposits in Serbia - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 197-201

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Rujevac

General data

Deposit name(s): Rujevac Identifier: YUG-00111

Commodities: As 0 t Class N/A Status: Deposit of unknown status

 PbZn
 0 t
 Class
 N/A

 Sb
 0 t
 Class
 N/A

Company: Zajaca - Rudarsko - Topionicarski Basen

Longitude: 19.314 Latitude: 44.342 District: Macvanski

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives Jasperoid-hosted stratabound low sulphidation epithermal veins: Hg, Sb

Ore deposit shape

Stratabound envelope of disseminated ore

Concordant to subconcordant stockwork (veinlets network) envelope

Mineralization Age: Miocene

 Ore mineralogy
 Host rock mineralogy
 Hydrothermal alteration

 Stibnite
 Quartz
 Silicification

Pyrite Calcite
Sphalerite Chalcedony

Galena
Arsenopyrite
Realgar
Chalcopyrite
Boulangerite
Bournonite
Zinkenite
Grey copper
Orpiment
Cinnabar

Gold

Host rocks Age: Jurassic

Hostrock formation names

Jurassic limestone, schists and sandstone

Limestone

Dacite dikes Medium- to fine-grained detrital

sediment Schist/shale Dacite

Economy

Exploitation type

Sublevel stoping

Sb Antimony (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

PbZn Lead + Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

As Arsenic (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:Reserve:-tAverage grade:Resource:-tAverage grade:

Environment

High acid generation potential due to the sulfidic composition of the primary ore.

The hydrothermal alteration type (silica) tends to deacrease acid-buffering capacity of the host-rocks.

Moreover, the presence of sulfosalts (sulfoarsenites) and cinnabar tends to release, when oxydized, elements like As and Hg into the environment.

Those elements, when accumulated in the natural receptors (like soils or stream sediments) are toxic for human health and ecosystems.

No information related to mine waste deposits as well as to tailings which are potential sources of contaminants in the form of particulates and dissolved metals.

Comments

Exploitation began in 1981. Overall output was 120,000 t/y in 1981 (RTB Zajaca).

The ore contains 2-3% Sb, 0.5-2.2% As, 0.2-0.8% Pb and 0.5-0.6% Zn

Geological references

Jancovic S, Mozgova NN, and Borodaev YS. - (1977) - The complex antimony-lead/ zinc deposit at Rujevac/ Yugoslavia; its specific geochemical and mineralogical features. - Mineralium Deposita, 12, (3), p. 381-392.

Jankovic S. - (1979) - Antimony deposits in south-eastern Europe. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 37, p. 25-48.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Moelo Y, Borodaev YS, and Mozgova NN. - (1983) - Association twinnite-zinkenite-plagionite du gisement complexe a Sb-Pb-Zn de Rujevac (Yougoslavie) Translated Title: The twinnite- zinkenite-plagionite association from the Sb-Pb-Zn deposit, Rujevac, Yougoslavia. - Bulletin de Minéralogie, 106, 5, p. 505-510.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Rujiste

General data

Deposit name(s): Rujiste Identifier: YUG-00039

Commodities: Asb 0 t Class N/A Status: Old industrial mine, abandoned deposit

Company:

Longitude: 20.767 Latitude: 42.926 District: Kosovo

Geology

Ore deposit type (gitology)

Asbestos, talc or magnesite deposits hosted by basic and ultrabasic rocks

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Mineralization Age:

Ore mineralogy

Chrysotile (Clino-, Ortho-, Par

Host rocks Age:

Hostrock formation names Host rock lithology

Kozarevo-Gradevci Serpentinite Mass Basic to ultrabasic rock s.l.

Economy

Exploitation type

Mining method unkown

Asb Asbestos (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:

Reserve:

Resource:

- t

Average grade:

- t

Average grade:

- t

Average grade:

Environment

Fibrous minerals in the form of fugitive dust pose a risk to human health through air contamination (airborne transportation). Mining wastes expose asbestos to erosion by natural agents (wind and water).

The weak, widely exposed, highly fractured rocks are geologic factors that influence environmental effects.

Comments

Geological references

Vakanjac B and Ilich M. - (1980) - Non-metallics in the ultramafites of the ophiolite complex of Yugoslavia. - Ophiolites; International ophiolite symposium. Nicosia, Cyprus. April 1-8, 1979. p. 722-726.

Vakanjac B. - (1982) - Geology of deposits of non-metallic minerals and mineral construction materials. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 95-111.

Economic references

Ruplje

General data

Deposit name(s): Ruplje Identifier: YUG-00201

Commodities: Ag 0 t Class N/A Status: Old industrial mine, exhausted deposit

 Au
 0 t
 Class
 N/A

 Cu
 0 t
 Class
 N/A

 PbZn
 0 t
 Class
 N/A

Company:

Longitude: 22.227 Latitude: 42.849 District: Jablanicki

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Mineralization Age: Tertiary

Ore mineralogy

Pyrite Sphalerite

Galena Chalcopyrite

Arsenopyrite Marcasite Tetrahedrite

Host rocks Age: Tertiary

Hostrock formation names

Ruplje dacite stock

Host rock lithology

Dacite

Economy

Exploitation type

Underground mining

PbZn Lead + Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Au Gold (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Ag Silver (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or refractory elem

Past production:

Reserve:

Resource:

- t

Average grade:

- t

Average grade:

- t

Average grade:

Environment

Potential acid draiange production due to the sulfides minerals present in the ore.

Expected high dissolved contents of base metals and arsenic in drainage waters with possible concentrations in stream sediments.

No information related to mine waste deposits as well as to tailings which are potential sources of contaminants in the form of particulates and dissolved metals.

Comments

The more important concentrations have been discovered at Crveni Breg and Novo Selo.

Samples from the Crveni Breg dump : 4.44-13.14% Pb, 7.91-20.44% Zn, 0.14-0.17% Cu, 0.19-1.18% As, 4-28 g/t Bi, 0.23-2.17 g/t Au and 550-783 g/t Ag (Simic - 1997).

Geological references

Simic M. - (1997) - Geological-structural features of the Besna Kobila Zone in SE Serbia - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 185-195

Economic references

Rusanda

General data

Deposit name(s): Rusanda Identifier: YUG-00232

Commodities: Petr 0 m3 Class N/A Status: Producing deposit

Company:

Longitude: 20.239 Latitude: 45.538 District:

Geology

Ore deposit type (gitology)

Oil deposits: oil, (S)

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:
Host rocks Age:

Economy

Exploitation type

Mining method unkown

Petr Petroleum (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-m3Average grade:-Reserve:-m3Average grade:-Resource:-m3Average grade:-

Environment

Potential contamination of surface waters, soils and sediments by hydrocarbons and oil products.

Comments

Geological references

Economic references

Sar

General data

Deposit name(s): Sar Identifier: YUG-00225

Commodities: LstC 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 21.276 Latitude: 42.140 District: Kosovo

Geology

Ore deposit type (gitology)

Sedimentary-related industrial rocks and minerals: Clays, limestones, dolomite, calcite, siliceous sand, quartzite, etc.

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age:

Host rocks Age: Upper/Late Cretaceous

Host rock lithology
Limestone
Marl

Economy

Exploitation type

Surface mining

LstC Cement limestone (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Dust production and fallout.

Geomorphic modifications in the landscape (quarry).

Comments

Content of CaCO3: 73.8% Production 1990: 284 kt

Geological references

llich M. - (1991) - Yugoslavian cement. Raw materials and production - Industrial Minerals, november 1991, pp. 59-61

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Sastavci

General data

Deposit name(s): Sastavci Identifier: YUG-00214

Commodities: PbZn 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 20.703 Latitude: 43.312 District: Raski

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Stratabound envelope of disseminated ore

Mineralization Age: Cenozoic

Host rocks Age:

Host rock lithology
Quartz diorite
Dacite
Andesite

Pyroclastic rocks s.l.

Economy

Exploitation type

Mining method unkown

PbZn Lead + Zinc (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

No data available.

Comments

Geological references

Radulovic B and Grabeljskek V. - (1978) - Geoloski prikaz novopronadenih lezista olova i cinka Sastavci i Kizevak potok na Kopaoniku Translated Title: Report on exploration of new lead-zinc deposits at Sastavci and Kizevak, Kopaonik region. - Radovi Instituta za Geolosko Rudarska Istrazivanja i Ispitivanja Nuklearnih i Drugih Mineralnih Sirovina, 18, (12), p. 93-104.

Radulovic B. - (1992) - Leziste cinka i olova karadak Translated Title: The Karadek zinc and lead deposit. - Radovi Geoinstitut, 27, p. 169-180.

Radulovic B. and Savic R. - (1995) - Deposits and the potential of base and precious metals in the ore field Raska. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Economic references

Sijarinska Banja

General data

Deposit name(s): Sijarinska Banja Identifier: YUG-00203

Commodities: Au 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 21.623 Latitude: 42.776 District: Jablanicki

Geology

Ore deposit type (gitology)

Fault and shear-zone controlled low sulphidation epithermal veins: Au, Ag, (Mn)

Porphyry Cu-Au deposits: Cu, Au, (Ag, Bi, Te)

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Tertiary

Ore mineralogy Host rock mineralogy

Pyrite Quartz

Chalcopyrite Arsenopyrite Galena Sphalerite Bismuthinite Stibnite Gold

Host rocks Age:

Host rock lithology

Amphibolite (s.l.)

Gneiss (s.l.)

Andesite

Economy

Exploitation type
Unworked

Uliworked

Au Gold (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:

Reserve:

- t

Average grade:

- t

Average grade:

Resource: - t Average grade:

Environment

High acid generation potential due to the sulfides minerals contained in the ore.

Expected high dissolved contents of base metals, Sb, Bi and As in drainage waters with possible concentrations of some of those elements in stream sediments.

Comments

Rekalije and Guri Gat occurrences

Geological references

Popovic R. - (2000) - Distribution of base and precious metals in the Lece volcano-intrusive massif (Vardar Zone) - Proceedings of the International Symposium "Geology and Metallogeny of the Dinarides and the Vardar Zone". The Academy of Sciences and Arts of the Republic of Srpska. The Departement of Natural, Mathematical and Technical Sciences, Vol. 1, pp. 443-452

Economic references

Sip

General data

Deposit name(s): Sip Identifier: YUG-00089

Orahovac

Commodities: Cr 40 000 t Class E Status: Old small-scale mine, exhausted deposit

Company:

Longitude: 20.652 Latitude: 42.463 District: Kosovo

Geology

Ore deposit type (gitology)

Ophiolite-hosted ore deposits: Cr, (PGE)

Ore deposit shape

Concordant to subconcordant mass, lens or pod of massive to submassive ore

Mineralization Age:
Ore mineralogy

Chromite

Host rocks Age:

Host rock lithology
Dunite
Peridotite

Economy

Exploitation type

Mining method unkown

Cr Chrome (Cr2O3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:40000 tAverage grade:48 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Environment

No specific environmental signature.

Comments

30-50 kt ore extracted between 1929-1945 - 48% Cr203

Geological references

Jankovic S. - (1967) - Metalogenetske epohe i rudonosna podrucja jugoslavije. - Beograd, 1967.

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-127

Soko

General data

Identifier: YUG-00145 Deposit name(s): Soko

Sokobanja

0 t Producing small-scale mine Commodities: Coal Class N/A Status:

Rudnik mrkog uglja SOKO - EPS Company:

Longitude: 22.040 Latitude: 43.626 District: Zajecarski

Geology

Ore deposit type (gitology)

Lignite deposits Coal deposits

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Age: Miocene Mineralization Host rocks

Age: Miocene

Hostrock formation names Host rock lithology

Bituminous or carbureted rock: clay, Sokobanja Coal Basin

claystone, sand, sandstone, limestone, dolomite, etc.

Detrital rock s.l.

Economy

Exploitation type

Underground mining

Coal Coal, lignite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: Average grade: Reserve: t Average grade: Resource: Average grade:

Environment

Potential acid rock drainage with respect of the sulfides content.

Suspended matter in mine water discharge.

Large geomorphic modifications of the landscape (pits, gullies, spoil heaps...).

Landform instability (collapses) created during and after mining operations.

Comments

Output expected: 260,000 t/y in 1985.

Coal heating value is 15,700 kJ, moisture is up to 22%, ash content about 18%.

Geological references

Cveticanin R. - (1982) - Review of Yugoslav coal basins. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 46-67.

Economic references

Anonymous - (1998) - Electric Power Industry of Serbia - 1998 - EPS, Beograd 1998, 152 p.

Anonymous - (1999) - Electric Power Industry of Serbia - 1999 - EPS, Public Relations Center, Beograd, 56 p.

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Stancha

General data

Deposit name(s): Stancha Identifier: YUG-00133

Commodities: Cu 5 000 t Class E Status: Deposit or prospect of unknown status

Company:

Longitude: 20.430 Latitude: 43.722 District:

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to basic-ultrabasic magmatic rocks

Volcanogenic massive and disseminated Cu-Au sulphide deposits: Cu, Au, (Zn, Co, Mo, Bi)

Ore deposit shape

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Discordant envelope of disseminated ore

Mineralization Age:

Ore mineralogy Hydrothermal alteration

Pyrite Silicification
Chalcopyrite Chloritization

Magnetite Ilvaite Pyrrhotite

Host rocks Age: Jurassic

Host rock lithology

Dolerite, diabase

Peridotite

Economy

Exploitation type

Mining method unkown

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:5000 tAverage grade:0.5 %

Environment

High acid generation potential due to the sulfide content of the primary ore body.

This Acid Rock Drainage can be enhanced by the various mineral assemblages forming the hydrothermal alteration halo.

Comments

Resources: 1 Mt @ 0.5% Cu

Geological references

Jankovic S and Putnik S. - (1980) - Copper deposits in the Southeastern Europe connected with the ophiolite complexes. - European Copper Deposits. Jankovic S and Sillitoe RH (Eds), UNESCO - IGCP Projects, Belgrade. p. 117-123.

Putnik S. - (1981) - Metalogenia bakra jurske dijabaz-roznacke formacije - Metallogenesis of copper in jurassic diabase-chert formation - Geoinstitut. Beograd, 1981. Monographs, vol. 6, 117 p., 2 plates.

Economic references

Stara Planina

General data

Deposit name(s): Stara Planina Identifier: YUG-00080

Commodities: Fe 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 22.683 Latitude: 43.217 District: Pirotski

Geology

Ore deposit type (gitology)

Oolitic iron ore deposits (Clinton, Minette): Fe

Ore deposit shape

Stratabound envelope of disseminated ore

Mineralization Age: Lower/Early Jurassic (Lias)

Ore mineralogy

Hematite

Siderite

Iron Oxydes(unspecified)

Host rocks Age: Lower/Early Jurassic (Lias)

Host rock lithology
Limestone

Economy

Exploitation type

Mining method unkown

Iron (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Fe

Potential contamination of surface water by suspended matter.

Comments

Geological references

Antonijevic I. - (1983) - Lezista gvozda Srbije Translated Title: The iron ore deposits of Serbia. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 41, p. 5-40.

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-099

Stari Glog

General data

Deposit name(s): Stari Glog Identifier: YUG-00093

Commodities: Mo 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 21.906 Latitude: 42.553 District: Pcinjski

Geology

Ore deposit type (gitology)

Granitic and peri-granitic veins and stockworks (greisen): Sn-W, (Cu, Bi, Sb, base metals)

Ore deposit shape

Discordant lode or vein (thickness > 50 cm), in clusters or isolated

Mineralization Age.

Ore mineralogy Host rock mineralogy

Molybdenite Quartz

Host rocks Age:

Host rock lithology
Granite (s.l.)

Economy

Exploitation type

Mining method unkown

Mo Molybdenum (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

No specific environmental signature.

Comments

Geological references

Schumacher F. - (1954) - The ore deposits of Jugoslavia and the development of its mining industry - Economic Geology, Vol 49, n°5, pp. 451-492

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-135

Stari Trg

General data

Deposit name(s): Stari Trg Identifier: YUG-00023

Trepca

Commodities: Pb 2 281 000 t Class A Status: Dormant deposit

 Ag
 3 064 t
 Class
 B

 Bi
 4 115 t
 Class
 B

 Zn
 1 483 000 t
 Class
 B

 Cd
 1 655 t
 Class
 C

Company: TREPCA Mining and Metallurgical Complex

Longitude: 20.917 Latitude: 42.938 District: Kosovo

Geology

Ore deposit type (gitology)

Pb-Zn-Ag skarns and stratiform mantos: Pb, Zn, Ag, (Au)

Ore deposit shape

Discordant mass or lens of massive to submassive ore Breccia-pipe, funnel, chimney, column, brecciated dyke

Mineralization Age: Miocene

Ore mineralogy Host rock mineralogy Hydrothermal alteration Galena Rhodochrosite (Dialoqite) Sericitization Sphalerite Dolomite Silicification Pyrrhotite Pyritization Calcite Pyrite Carbonatization Garnet Chalcopyrite Skarn formation **Epidote** Arsenopyrite

Arsenopyrite Actinolite
Stibnite Diopside
Jamesonite Wollastonite
Magnetite Quartz
Scheelite Siderite

Cubanite Bismuth

Host rocks Age: Paleozoic (Primary)

Hostrock formation names Host rock lithology

Ordovician to Silurian marble Sericitic schist, sericite schist of

sedimentary origin

Marble, cipolin (crystalline limestone)

Dacite

Undifferentiated volcanic breccia

Economy

Exploitation type

Underground mining

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:2066000 tAverage grade:6 %Reserve:215000 tAverage grade:3.9 %Resource:- tAverage grade:- %

Zn Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:1371000 tAverage grade:4 %Reserve:112000 tAverage grade:2 %Resource:- tAverage grade:- %

Cd Cadmium (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or refractory elem

Past production:1655 tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Ag Silver (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or refractory elem

Past production:2569 tAverage grade:75 g/tReserve:495 tAverage grade:90 g/tResource:- tAverage grade:- g/t

Bi Bismuth (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or refractory elem

Past production:4115 tAverage grade:102 g/tReserve:- tAverage grade:- g/tResource:- tAverage grade:- g/t

Environment

The primary mineralization is mainly composed of sulfides whose oxidation generates acid, ferric iron and dissolved metals (Pb, Zn, Cu...) that can affect drainage water, soils and stream sediments.

The potential acid mine drainage generated is buffered by the gangue mineralogy (carbonates) which are acid-consuming minerals.

The host rock assemblage (marble and cipolin) which alters to calc-silicates decrease acid-buffering capacity.

Presence of As which is highly mobile in medium to high pH environment and which can accumulate in stream sediments.

The information related to tailings disposals which are potential sources of contaminants in the form of particulates and dissolved metals, indicate that large amounts of such materials (~30 Mt) exist in the Prvi Tunel area.

Comments

In 1982: reserves of at least 50 Mt of ore @ 5-7% Pb and 4% Zn. Mineralization extends below 1,300 m.

Mined since the Middle Ages, Trepca is currently worked by cut-and-fill techniques. In 1982, the output was 600,000 t of ore

Data in Laznicka P. (1985) p 1248 : 3 Mt Pb (6%), 2 Mt Zn (4%) and 5,000 t Ag (100 g/t)

Data in "geology of canadian mineral deposit types (1995), from Forgan (1950): 12.5 Mt @ 3.8% Zn, 8.6% Pb, 0.2% Cu, 140 g/t Ag

Production 1930-1950: 10,047,540t @ 8.2% Pb (825,000 t Pb), 5.6% Zn (566,000 t Zn) and 102 g/t Ag (1,022 t Ag). Bi was produced in about the same amount as Ag (Schumacher F. 1954).

Mission ITT-UNMIK (12/2000) : Past production (1931-1998) : 34,350,000 t @ 6.0% Pb, 4.0% Zn, 75 g/t Ag. Resources : 5,500,000 t @ 3.9% Pb, 2.0% Zn and 90 g/t Ag.

Geological references

Barral J.P. - (2001) - Réhabilitation du combinat de Trepca au Kosovo - Revue de la Société de l'Industrie Minérale, IM Environnement, N°12, Avril 2001, pp. 6-10.

Forgan C. B. - (1950) - Yugoslavia. Ore deposit at the Stantrg lead-zinc mine - International Geological Congress. Report of the eighteenth session Great Britain 1948. Part VII. Symposium and proceedings of section F. The geology, paragenesis, and reserves of the ores of lead and zinc, pp. 290-307

Jankovic S and Petkovic M. - (1980) - The main lead, zinc and copper deposits of Yugoslavia; excursion No. 202 C. - Yugoslavia; outline of Yugoslavian geology; Excursion 201 A-202 C. Grubic A (Ed), Int, Geol. p. 75-94.

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S. - (1978) - Izotopni sastav olova u pojedinim tertsijarnim olovo-tsinkovim rudishtima Srpsko-makedonske metalogenetske provintsije Translated Title: The isotopic composition of lead in some Tertiary lead-zinc deposits within the Serbo-Macedonian metallogenic province - Geoloshki Anali Balkanskoga Poluostrva, 42, p. 507-525.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S. - (1984) - Major metallogenic units and ore deposits in Yugoslavia. - Earth Science (Paris) = Sciences de la Terre (Paris), 17, p. 385-394.

Mari D. and J. - (1979) - La mine de « Stari-Trg » (Trepca, Yougoslavie) et ses richesses minéralogiques. - Minéraux et Fossiles, dec. 1979, n° 59-60, pp. 19-28.

Schumacher F. - (1954) - The ore deposits of Jugoslavia and the development of its mining industry - Economic Geology, Vol 49, n°5, pp. 451-492

Strucl I. - (1981) - Die schichtgebundenen Blei-Zink-Lagerstaetten Jugoslawiens Translated Title: The stratiform lead-zinc deposits of Yugoslavia. - Mitteilungen der Oesterreichischen Geologischen Gesellschaft, 74-75, p. 307-322.

Economic references

Anonymous. - (1982) - Jugoslavija za Rudarstvo. - 11th World Mining Congress, Beograd. 172 p.

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Salatic D. - (1999) - Mineral potential and its valorisation in yugoslavia - "VIII Balkan Mineral Processing Conference", 13-18 september 1999, Beograd, 9 p.

Steblez W. - (1998) - Republics of the former Yugoslavia. - Mining Annual Review, 1998, p. 218-221.

Other references

Other data bases

Carte Métallogénique de l'Europe

Stavalj

General data

Deposit name(s): Stavalj Identifier: YUG-00146

Sjenica

Commodities: Coal 0 t Class N/A Status: Producing small-scale mine

Company: Rudnik lignita STAVALJ - EPS

Longitude: 19.991 Latitude: 43.278 District: Zlatiborski

Geology

Ore deposit type (gitology)

Lignite deposits

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Miocene

Host rocks Age: Miocene

Hostrock formation names Host rock lithology

Sjenica Coal Basin Undifferentiated sediment

Economy

Exploitation type

Surface mining Underground mining

Coal Coal, lignite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:

Reserve:

Resource:

- t

Average grade:

Average grade:

Average grade:

Environment

Potential acid rock drainage with respect of the sulfides content.

Suspended matter in mine water discharge.

Large geomorphic modifications of the landscape (pits, gullies, spoil heaps...).

Landform instability (collapses) created during and after mining operations.

Comments

Annual output ranged up to 50,000 t/y in 1981.

Heating value 14,600 kJ, moisture 30.9%, ash 9.74% sulphur 0.94%.

Geological references

Cveticanin R. - (1982) - Review of Yugoslav coal basins. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 46-67.

Economic references

Anonymous - (1998) - Electric Power Industry of Serbia - 1998 - EPS, Beograd 1998, 152 p.

Anonymous - (1999) - Electric Power Industry of Serbia - 1999 - EPS, Public Relations Center, Beograd, 56 p.

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Stimlje

General data

Deposit name(s): Stimlje Identifier: YUG-00102

Commodities: Fe 400 000 t Class E Status: Deposit of unknown status

Company:

Longitude: 21.050 Latitude: 42.467 District: Kosovo

Geology

Ore deposit type (gitology)

Laterite-related ore deposits: Fe, Mn, Ni-Co, Au, Pt, corundum, P, REE, Nb, etc.

Fe and Mn sedimentary deposits: Fe, Mn

Ore deposit shape

Cap, blanket, crust

Subconcordant or stratabound mass or lens of massive to submassive ore

Mineralization Age: Upper/Late Cretaceous

Ore mineralogy
Chamosite

Hematite
Magnetite
Goethite
Chromite

Host rocks Age: Upper/Late Cretaceous

Economy

Exploitation type

Mining method unkown

Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:-tAverage grade:-%Resource:400000 tAverage grade:36 %

Environment

Potential particulate and colloidal iron compounds in drainage water.

Comments

The ore contains 28-44% Fe, 1.3-2.3% Cr and 0.01% Co

Geological references

Anonymous. - (1978) - The Iron Ore Deposits of Europe and adjacent Areas. - Explanatory Notes to the International Map of the Iron Ore Deposits of Europe, 1:2,500,000. Zitzmann A. Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover. 386 p.

Economic references

Other references

Other data bases

The Iron Ore Deposits of Europe - 1978 YU18

Stolice

General data

Deposit name(s): Stolice Identifier: YUG-00158

Commodities: Sb 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 19.302 Latitude: 44.401 District: Macvanski

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Vein and disseminated Sb deposits: Sb, Hg, As, (Au, Tl)

Jasperoid-hosted stratabound low sulphidation epithermal veins: Hg, Sb

Ore deposit shape

Stratabound envelope of disseminated ore Field of discordant lodes (n*km2, n*ha)

Mineralization

Age:

Ore mineralogy Host rock mineralogy Hydrothermal alteration

Stibnite Quartz Silicification

Pyrite Chalcopyrite Galena

Host rocks Age: Upper/Late Carboniferous

(Stephanian-Westphalian, Upper/Late Namurian, Silesian, Pennsylvanian)

Host rock lithology

Limestone

Undifferentiated metamorphic rock

Dacite Andesite

Economy

Exploitation type

Mining method unkown

Sb Antimony (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Acid generation potential due to the sufides minerals contained in the ore. Expected dissolved content of Cu and Sb in drainage waters.

Comments

Geological references

Durickovic A. - (1982) - Metalogenija rudnog polja Brasina-Zajaca-Stolice-Dobri Potok Translated Title: Metallogeny of the Brasina mining field, Zajaca, Stolice, Dobri Potok. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 40, p. 17-53. Jankovic S. - (1979) - Antimony deposits in south-eastern Europe. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 37, p. 25-48.

Mudrinic C. - (1975) - Primarni oreoli rasejavanja rudnih metala u antimonskom lezistu Stolice (Zapadna Srbija) Translated Title: Primary dispersion aureoles of the Stolica antimony deposit; western Serbia. - Zbornik Radova Rudarsko Geoloskog Fakulteta, Universitet u Beogradu, 18, p. 57-66.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Stragari

General data

Deposit name(s): Stragari Identifier: YUG-00053

Commodities: Asb 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 20.674 Latitude: 44.163 District: Sumadijski

Geology

Ore deposit type (gitology)

Asbestos, talc or magnesite deposits hosted by basic and ultrabasic rocks

Ore deposit shape

Discordant envelope of disseminated ore

Mineralization Age: Cenozoic

Ore mineralogy

Chrysotile (Clino-, Ortho-, Par

Host rocks Age:

Hostrock formation names Host rock lithology

Contact serpentinite mass - Cretaceous Basic to ultrabasic rock s.l.

limestone Serpentinite
Limestone

Economy

Exploitation type
Surface mining

Asb Asbestos (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:-tAverage grade:15%Resource:-tAverage grade:%

Environment

Fibrous minerals in the form of fugitive dust pose a risk to human health through air contamination (airborne transportation). Mining wastes expose asbestos to erosion by natural agents (wind and water).

Comments

Geological references

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Vakanjac B and Ilich M. - (1980) - Non-metallics in the ultramafites of the ophiolite complex of Yugoslavia. - Ophiolites; International ophiolite symposium. Nicosia, Cyprus. April 1-8, 1979. p. 722-726.

Vakanjac B. - (1982) - Geology of deposits of non-metallic minerals and mineral construction materials. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 95-111.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Other references

Other data bases

Carte Métallogénique de l'Europe 26-053

Suplja Stena

General data

Deposit name(s): Suplja Stena Identifier: YUG-00047

Commodities: Hg 309 t Class D Status: Old industrial mine, abandoned deposit

Company:

Longitude: 20.544 Latitude: 44.632 District: Beograd

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Mercury deposits hosted by sediments injected by basic diatremes (Almaden): Hg, (As, Sb)

Ore deposit shape

Discordant envelope of disseminated ore

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Miocene

Ore mineralogy Host rock mineralogy Hydrothermal alteration

Cinnabar Quartz Silicification

Pyrite Barite

Marcasite
Sphalerite
Chalcopyrite

Host rocks Age: Jurassic

Host rock lithology

Basic to ultrabasic rock s.l.

Serpentinite

Undifferentiated sediment

Economy

Exploitation type

Underground mining

Hg Mercury (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:80 tAverage grade:1.46 %Reserve:229 tAverage grade:0.6 %Resource:- tAverage grade:- %

Environment

The primary ore mineralogy, mainly composed of sulfides generates Acid Mine Drainage and associated dissolved metals that can affect the quality of drainage water, soils and stream sediments.

The alteration of cinabar leads to the release of Mercury that can be bioaccumulated in the ecosystems and the foodchain.

Comments

The ore contains 0.2-1.0% Hg (Jankovic - 1982).

Between 1885-1891, 7,796 t @ 1.46% Hg have been extracted.

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe

26-047

Suva Ruda

General data

Deposit name(s): Suva Ruda Identifier: YUG-00103

Commodities: Fe 1 000 000 t Class D Status: Deposit of unknown status

Cu 0 t Class N/A

Company: Rudnik Magnetita Suva Ruda - Raska

Longitude: 20.735 Latitude: 43.304 District: Raski

Geology

Ore deposit type (gitology)

Fe (magnetite) skarns: Fe, (Co)

Ore deposit shape

Subconcordant or stratabound mass or lens of massive to submassive ore

Mineralization Age: Cenozoic

 Ore mineralogy
 Host rock mineralogy
 Hydrothermal alteration

 Magnetite
 Garnet
 Skarn formation

Chalcopyrite Martite Pyrite Marcasite Valentinite Bismuthinite

Host rocks Age: Paleozoic (Primary)

Hostrock formation names Host rock lithology

Paleozoic schists Exoskarn
Kopaonik granodioritic complex Amphibolite (s.l.)

Marble, cipolin (crystalline limestone)

Calcic hornfels, tactite

Economy

Exploitation type

Surface mining Underground mining

Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:1000000 tAverage grade:42 %Resource:-tAverage grade:-%

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:0.96%Reserve:-tAverage grade:-%Resource:-tAverage grade:-%

Environment

Acid mine drainage potential due to the primary ore composition enriched in sulfides like chalcopyrite, pyrite, marcasite.

No information related to mine waste deposits as well as to tailings which are potential sources of contaminants in the form of particulates and dissolved metals.

Comments

Mining was initiated in 1972 with an output of 250,000 t/y and a content of 26.78% Fe3O4 and 0.96% Cu

Geological references

Anonymous. - (1978) - The Iron Ore Deposits of Europe and adjacent Areas. - Explanatory Notes to the International Map of the Iron Ore Deposits of Europe, 1:2,500,000. Zitzmann A. Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover. 386 p. Antonijevic I. - (1983) - Lezista gvozda Srbije Translated Title: The iron ore deposits of Serbia. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 41, p. 5-40.

Jankovic S. - (1977) - The iron ore deposits in Yugoslavia. - The iron ore deposits of Europe and adjacent areas; explanatory notes to the International map of the iron ore deposits of Europe, 12,500,000; Volume I, Text and figures. Zitzmann A (Ed), Bundesanst, Geowiss. p. 411-418.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Other references

Other data bases

The Iron Ore Deposits of Europe - 1978 YU19

Suvo Rudiste

General data

Deposit name(s): Suvo Rudiste Identifier: YUG-00104

Commodities: Fe 200 000 t Class E Status: Old industrial mine, exhausted deposit

 Cu
 0 t
 Class
 N/A

 Mn
 0 t
 Class
 N/A

Company: Rudnik Magnetita Suva Ruda - Raska

Longitude: 20.790 Latitude: 43.291 District: Rasinski

Geology

Ore deposit type (gitology)

Fe (magnetite) skarns: Fe, (Co)

Ore deposit shape

Subconcordant or stratabound mass or lens of massive to submassive ore

Mineralization Age: Cenozoic

Ore mineralogyHost rock mineralogyHydrothermal alterationMagnetiteGarnetSkarn formation

Chalcopyrite
Martite
Pyrite
Marcasite
Valentinite
Bismuthinite
Hematite

Host rocks Age: Paleozoic (Primary)

Hostrock formation names

Kopaonik granodioritic complex

Exoskarn

Paleozoic schists Marble, cipolin (crystalline limestone)

Amphibolite (s.l.)
Calcic hornfels, tactite

Economy

Exploitation type

Surface mining

Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:200000 tAverage grade:38 %Resource:-tAverage grade:-%

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:-tAverage grade:0.7%Resource:-tAverage grade:-%

Mn Manganese (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-%Reserve:-tAverage grade:0.4%Resource:-tAverage grade:-%

Environment

Acid mine drainage potential due to the primary ore composition enriched in sulfides like chalcopyrite, pyrite, marcasite etc.

No information related to mine waste deposits as well as to tailings which are potential sources of contaminants in the form of particulates and dissolved metals.

Comments

The ore contained 36-40% Fe, 0.7% Cu and 0.2% Mn. In 1982, annual output was 300,000 t/y ore.

Geological references

Anonymous. - (1978) - The Iron Ore Deposits of Europe and adjacent Areas. - Explanatory Notes to the International Map of the Iron Ore Deposits of Europe, 1:2,500,000. Zitzmann A. Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover. 386 p.

Antonijevic I. - (1983) - Lezista gvozda Srbije Translated Title: The iron ore deposits of Serbia. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 41, p. 5-40.

Jankovic S. - (1977) - The iron ore deposits in Yugoslavia. - The iron ore deposits of Europe and adjacent areas; explanatory notes to the International map of the iron ore deposits of Europe, 12,500,000; Volume I, Text and figures. Zitzmann A (Ed), Bundesanst, Geowiss. p. 411-418.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Other references

Other data bases

The Iron Ore Deposits of Europe - 1978 YU20

Takovo

General data

Deposit name(s): Takovo Identifier: YUG-00115

Commodities: Sb 0 t Class N/A Status: Group of mineral occurrences

Company:

Longitude: 20.397 Latitude: 44.056 District: Moravicki

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Sediment-hosted ore deposits related to shallow intrusions: Au, Ag, Hg, Sb, As

Ore deposit shape

Discordant envelope of disseminated ore

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Neogene (Miocene to Pliocene)

Ore mineralogy Host rock mineralogy Hydrothermal alteration

Stibnite Quartz Silicification

Cinnabar Chalcedony
Pyrite Opal

Marcasite

Host rocks Age: Triassic

Hostrock formation names
Triassic silicified limestone
Subvolcanic dacite intrusions
Host rock lithology
Dacite
Limestone

Economy

Exploitation type
Unworked

Sb Antimony (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

High acid generation potential due to the sulfidic composition of the primary ore.

The hydrothermal alteration type (silica) tends to decrease acid-buffering capacity of the host-rocks. Moreover, the presence of cinnabar tends to release, when oxydized, Hg into the environment.

This element, when accumulated in the natural receptors (like soils or stream sediments) is toxic for human health and ecosystems.

Comments

Geological references

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S. - (1979) - Antimony deposits in south-eastern Europe. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 37, p. 25-48.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

YUG-00115

Tanda

General data

Deposit name(s): Tanda Identifier: YUG-00198

Commodities: W 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 22.157 Latitude: 44.233 District: Borski

Geology

Ore deposit type (gitology)

Granitic and peri-granitic veins and stockworks (greisen): Sn-W, (Cu, Bi, Sb, base metals)

Ore denosit shane

Discordant lode or vein (thickness > 50 cm), in clusters or isolated

Mineralization Ag

Ore mineralogy Host rock mineralogy

Scheelite Feldspar

Chalcopyrite Molybdenite Sphalerite Galena Pyrite Stibnite Gold

Host rocks Age:

Hostrock formation names

Granite of Tanda

Host rock lithology
Granite (s.l.)

Economy

Exploitation type

Mining method unkown Wolfram (WO3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Acid generation potential due to the sulfides minerals contained in the ore. Expected high dissolved contents of base metals and W in surface water.

Comments

The ore contains up to 0.9% WO3 (Jankovic - 1982)

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Teocin

General data

Deposit name(s): Teocin Identifier: YUG-00209

Commodities: 71 550 t Class Status: Deposit of unknown status

Company:

44.088 District: Moravicki Longitude: 20.279 Latitude:

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Host rocks

Field of discordant lodes (n*km2, n*ha)

Mineralization Age:

> Ore mineralogy Quartz

Age: Triassic

Host rock lithology

Dolomite, dolostone

Economy

Exploitation type

Mining method unkown

Qtz Massive quartz, blocks for ferrosilicon (SiO2)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: - t Average grade: - t Reserve: Average grade: 71550 t Resource: Average grade:

Environment

Possible contamination of surface water by suspended matter.

Comments

Possibility for piezoelectric or/and optical use

Geological references

Ilic M. - (1998) - Gem raw materials and their occurrence in Serbia - Juvelirske mineralne sirovine i njihova nalazista u Srbiji -Beograd, Univerzitet, Rudarsko-geoloski fakultet, 140 p.

Economic references

Tisovik

General data

Deposit name(s): Tisovik Identifier: YUG-00114

Commodities: Pb 0 t Class N/A Status: Old small-scale mine, exhausted deposit

Company:

Longitude: 19.563 Latitude: 44.264 District: Kolubarski

Geology

Ore deposit type (gitology)

Carbonate-hosted base metals deposits: Pb-Zn-Ag, Ba, F

Unspecified volcano-sedimentary and sedimentary-exhalative deposits

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age: Middle Triassic (Muschelkalk)

Ore mineralogy
Cerussite
Mimetite
Pyrite

Host rocks Age: Middle Triassic (Muschelkalk)

Hostrock formation names

Middle Triassic carbonate facies

Host rock lithology

Carbonate rock s.l.

Economy

Exploitation type

Mining method unkown

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Acid mine drainage potential due to the pyritic composition of the primary ore. The carbonates (like cerussite) existing either in the gangue or in the host rocks may increase the acid-buffering capacity of the rocks.

Comments

Geological references

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Popovic R. - (1991) - Pojava sulfidne mineralizacije u Dolovima (dolina reke Ljubovide, zapadna Srbija) Translated Title: Occurrence of sulfide mineralization in Dolovi, the Ljubovida River valley, western Serbia. - Glasnik Prirodnjackog Muzeja u Beogradu, Serija A: Mineralogija, Geologija, Paleontologija, 46, p. 143-149.

Economic references

Tolishnitsa

General data

Deposit name(s): Tolishnitsa Identifier: YUG-00132

Commodities: Cu 15 000 t Class D Status: Deposit or prospect of unknown status

Au 0 t Class N/A

Company:

Longitude: 20.460 Latitude: 43.612 District:

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to basic-ultrabasic magmatic rocks

Volcanogenic massive and disseminated Cu-Au sulphide deposits: Cu, Au, (Zn, Co, Mo, Bi)

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:

 Ore mineralogy
 Host rock mineralogy
 Hydrothermal alteration

 Pyrite
 Quartz
 Silicification

Pyrite Quartz Silicification
Chalcopyrite Chalcedony Chloritization

Carbonates

Cubanite Covellite Chalcocite

Magnetite

Iron Oxydes(unspecified)

Host rocks Age:

Economy

Exploitation type

Mining method unkown

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:15000 tAverage grade:0.6 %

Au Gold (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

High acid generation potential due to the sulfide content of the primary ore body.

This Acid Rock Drainage can be enhanced by the various mineral assemblages forming the hydrothermal alteration halo.

Comments

Resources: 2.5 Mt @ 0.6% Cu

Geological references

Jankovic S and Putnik S. - (1980) - Copper deposits in the Southeastern Europe connected with the ophiolite complexes. - European Copper Deposits. Jankovic S and Sillitoe RH (Eds), UNESCO - IGCP Projects, Belgrade. p. 117-123.

Putnik S. - (1981) - Metalogenia bakra jurske dijabaz-roznacke formacije - Metallogenesis of copper in jurassic diabase-chert formation - Geoinstitut. Beograd, 1981. Monographs, vol. 6, 117 p., 2 plates.

YUG-00132

Economic references

Topola

General data

Deposit name(s): Topola Identifier: YUG-00105

Commodities: Fe 130 000 t Class E Status: Deposit of unknown status

Company:

Longitude: 20.683 Latitude: 44.253 District: Sumadijski

Geology

Ore deposit type (gitology)

Laterite-related ore deposits: Fe, Mn, Ni-Co, Au, Pt, corundum, P, REE, Nb, etc.

Oolitic iron ore deposits (Clinton, Minette): Fe

Ore deposit shape

Cap, blanket, crust

Subconcordant or stratabound mass or lens of massive to submassive ore

Mineralization Age: Lower/Early Cretaceous

Ore mineralogy
Chamosite
Goethite

Host rocks Age: Lower/Early Cretaceous

Economy

Exploitation type

Mining method unkown

Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:- tAverage grade:- %Reserve:130000 tAverage grade:31 %Resource:- tAverage grade:- %

Environment

Drainage water with suspended solids content enriched in Fe/Mn.

Comments

The ore contains 31% Fe, 20% SiO2, 19% Al2O3, 1% Ni and 2.74% Cr.

Geological references

Anonymous. - (1978) - The Iron Ore Deposits of Europe and adjacent Areas. - Explanatory Notes to the International Map of the Iron Ore Deposits of Europe, 1:2,500,000. Zitzmann A. Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover. 386 p. Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Other references

Other data bases

The Iron Ore Deposits of Europe - 1978 YU22

Trbusnica

General data

Deposit name(s): Trbusnica Identifier: YUG-00163

Commodities: Sb 0 t Class N/A Status: Group of mineral occurrences

Company:

Longitude: 20.363 Latitude: 44.352 District: City of Beograd

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age: Neogene (Miocene to Pliocene)

Ore mineralogy Host rock mineralogy

Stibnite Quartz
Sphalerite Chalcedony
Galena Calcite

Pyrite Jamesonite

Host rocks Age: Upper/Late Cretaceous

Hostrock formation names Host rock lithology
Upper Cretaceous flysh Limestone

Flysch and fine- to medium-grained volcaniclastic (volcano-sedimentary)

turbidite

Economy

Exploitation type

Unworked

Sb Antimony (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Acid generation potential due to the sulfides content of the primary ore.

Comments

Geological references

Jankovic S. - (1979) - Antimony deposits in south-eastern Europe. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 37, p. 25-48.

Stajevic B and Mudrinic C. - (1978) - Pojave antimona kod Trbusnice (Severna Sumadija) Translated Title: Antimony occurrences at Trbusnica near Lazarevac, northern Sumadija. - Zbornik Radova Rudarsko Geoloskog Fakulteta, Universitet u Beogradu, 21, p. 35-42.

Economic references

Trijeska

General data

Deposit name(s): Trijeska Identifier: YUG-00217

Commodities: U 0 t Class N/A Status: Primary occurrence of unknown status

Company:

Longitude: 20.522 Latitude: 44.011 District: Moravicki

Geology

Ore deposit type (gitology)

Uraniferous vein, breccia and stratabound disseminated deposits: U, (Mo, Cu, Se, F, Th, REE, Pb, Zn)

Ore deposit shape

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Tertiary

Ore mineralogy Host rock mineralogy Hydrothermal alteration

Apatite Opal Kaolinization

Pyrite Illite

Chalcopyrite

Iron Oxydes(unspecified)

Host rocks Age: Tertiary

Hostrock formation names

Borac calderas and Trijeska neck

Host rock lithology

Pyroclastic rocks s.l.

Andesite

Economy

Exploitation type
Unworked

Uranium (metal)

Ore type: Ores in which the element is adsorbed onto clays, organic compounds, oxyhydroxides,

etc.

Past production:

Reserve:

- t

Average grade:

- t

Average grade:

-

Resource: - t Average grade:

Environment

Acid generation potential due to the sulfides minerals present in the ore.

Expected concentrations of dissolved U, radionuclides and base metals in the drainage waters.

Radon and gamma radiations.

Comments

Geological references

Klajn D. - (1983) - Uranium hydrothermal mineralization in the Borac-Rudnik Area (Sumadija); possible relation with buried stratiform ore deposits. - Anuarul Institutului de Geologie si Geofizica = Annuaire de l'Institut de Geologie et de Geophysique, 61, p. 199-204.

Economic references

Trnava

General data

Deposit name(s): Trnava Identifier: YUG-00074

Commodities: Mg 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 20.586 Latitude: 43.124 District: Raski

Geology

Ore deposit type (gitology)

Asbestos, talc or magnesite deposits hosted by basic and ultrabasic rocks

Ore deposit shape

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age

Ore mineralogy

Magnesite (Giobertite)

Host rocks Age:

Economy

Exploitation type

Mining method unkown

Mg Magnesium, magnesite (MgCO3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:Reserve:-tAverage grade:Resource:-tAverage grade:

Environment

Comments

Other Trnava: 20.5123/43.2889, near Raska

Geological references

Vakanjac B and Ilich M. - (1980) - Non-metallics in the ultramafites of the ophiolite complex of Yugoslavia. - Ophiolites; International ophiolite symposium. Nicosia, Cyprus. April 1-8, 1979. p. 722-726.

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-091

Trstenik

General data

Deposit name(s): Trstenik Identifier: YUG-00030

Commodities: Ni 30 000 t Class C Status: Deposit of unknown status

 Fe
 1 200 000 t
 Class D

 Cr
 105 000 t
 Class E

 Co
 0 t
 Class N/A

Company:

Longitude: 20.848 Latitude: 42.667 District: Kosovo

Geology

Ore deposit type (gitology)

Residually enriched ore deposits: Fe, Mn, Ni-Co, Au, Pt, P, U, corundum, etc.

Oolitic iron ore deposits (Clinton, Minette): Fe

Ore deposit shape

Stratabound envelope of disseminated ore

Cap, blanket, crust

Mineralization Age: Upper/Late Cretaceous

Ore mineralogy Host rock mineralogy

Goethite Calcite
Magnetite Quartz
Chromite Serpentine
Hematite Kaolinite

Siderite Fe-Chlorite Millerite

Host rocks Age: Upper/Late Cretaceous

Hostrock formation names
Paleozoic serpentinite
Conglomerate

Upper Cretaceous rocks (Senonian) Sandstone

Reef limestone (bioherm, biostome)
Oolitic limestone, oncoidal limestone

Economy

Exploitation type

Unworked

Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:1200000 tAverage grade:40 %Resource:-tAverage grade:-%

Cr Chrome (Cr2O3)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:105000 tAverage grade:3.5 %Resource:-tAverage grade:-%

Ni Nickel (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:30000 tAverage grade:1%Resource:-tAverage grade:-%

YUG-00030

Co Cobalt (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-%Reserve:-tAverage grade:0.1%Resource:-tAverage grade:-%

Environment

Particulate and colloidal iron compounds can contaminate discharge water.

Comments

Investigated in 1952 by adits and drilling.

Individual bodies not over 0.5 Mt of ore with 34.39% Fe (max 41.5%), 1.39% Cr, 0.98% Ni and 0.1% Co.

Data in Laznicka P. (1985) p 212: 1.2 Mt Fe (40%), 105,000 t Cr (3.5%) and 30,000 t Ni (1%)

Drenica ore field: Trstenik, Vrbovec and Gradina deposits (Boev and Jankovic - 1996).

Geological references

Anonymous. - (1978) - The Iron Ore Deposits of Europe and adjacent Areas. - Explanatory Notes to the International Map of the Iron Ore Deposits of Europe, 1:2,500,000. Zitzmann A. Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover. 386 p.

Boev B. and Jankovic S. - (1996) - Nickel and nikeliferous iron deposits of the Vardar Zone (SE Europe) with particular reference to the Rzanovo-Studena Voda ore-bearing series - University "St. Kiril and Metodij" - Skopje. Faculty of Mining and Geology - Stip. Geological Department. Special Issue n° 3, 273 p.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Other references

Other data bases

The Iron Ore Deposits of Europe - 1978 YU24

Tulare

General data

Deposit name(s): Tulare Identifier: YUG-00136

Commodities: Au 0 t Class N/A Status: Deposit or prospect of unknown status

 Cu
 0 t
 Class
 N/A

 PbZn
 0 t
 Class
 N/A

Company:

Longitude: 21.443 Latitude: 42.795 District: Jablanicki

Geology

Ore deposit type (gitology)

Low-sulphidation (adularia - sericite) epithermal deposits: Au, Ag, Pb, Zn, Cu, Sb, (Hg, As, Mn, Tl)

Porphyry Cu-Au deposits: Cu, Au, (Ag, Bi, Te)

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Neogene (Miocene to Pliocene)

Ore mineralogyHost rock mineralogyHydrothermal alterationPyriteQuartzArgillic alterationGalenaAluniteSilicificationSphaleriteChalcopyrite

Tetrahedrite Enargite Bornite Antimonite Pyrrhotite Gold Electrum

Host rocks Age: Neogene (Miocene to Pliocene)

Hostrock formation namesHost rock lithologyTulare CalderaPyroclastic rocks s.l.

Lece Volcanogenic complex Andesite

Economy

Exploitation type

Unworked

Au Gold (metal)

Ore type: Ore of indeterminate nature

Past production:

Reserve:

- t

Average grade:

- Average grade:

- t

Resource: - t Average grade:

Cu Copper (metal)

Ore type: Ore of indeterminate nature

Past production:

Reserve:

- t

Average grade:

Average grade:

- t

Resource: - t Average grade: -

YUG-00136

PbZn Lead + Zinc (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

High acid generation potential due to the sulfidic composition of the primary ore.

The widespread hydrothermal alteration types (silica, advanced argillic) tends to increase acid-generating capacity of the rocks.

Potential release of Cu and others metals (Zn, Pb, Sb..) into the drainage waters.

Comments

Geological references

Jankovic S and Jelenkovic R. - (1995) - Gold mineralization in Yugoslavia; metallogenic environments and associations of minerals. - Studia Universitatis Babes Bolyai, Geologia. 40, (1), p. 85-102.

Pesut D. - (1976) - Geology, tectonics and metallogeny of Lece Massif. - Rasprave Zavoda za Geoloska i Geofizicka Istrazivanja, 14, 59 p.

Popovic R. - (2000) - Distribution of base and precious metals in the Lece volcano-intrusive massif (Vardar Zone) - Proceedings of the International Symposium "Geology and Metallogeny of the Dinarides and the Vardar Zone". The Academy of Sciences and Arts of the Republic of Srpska. The Departement of Natural, Mathematical and Technical Sciences, Vol. 1, pp. 443-452

Economic references

Usce

General data

Deposit name(s): Usce Identifier: YUG-00140

Commodities: Coal 0 t Class N/A Status: Deposit of unknown status

Company: Rudnik kamenog uglja IBARSKI RUDNICI - EPS

Longitude: 20.604 Latitude: 43.473 District: Raski

Geology

Ore deposit type (gitology)

Coal deposits

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Miocene

Host rocks Age: Miocene

Hostrock formation names Host rock lithology

Ibar Tertiary coal basin Coal (anthracite, graphite)

Detrital rock s.l.

Economy

Exploitation type

Underground mining

Coal Coal, lignite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Potential acid rock drainage with respect of the sulfides content.

Suspended matter in mine water discharge.

Landform instability (collapses) created during and after mining operations.

Comments

Coal mined in the Ibar basin is considerably metamorphosed by contact-thermal changes of andesite effusions.

The average sulphur content is 5 to 6% and the heating value is about 26,000 kJ/kg.

Geological references

Cveticanin R. - (1982) - Review of Yugoslav coal basins. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 46-67. Tsvetichanin R. - (1976) - Petrography of coals in Yugoslav deposits of various ages. - Lithology and Mineral Resources, 11, (1), p. 120-126.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Valja Saka

General data

Deposit name(s): Valja Saka Identifier: YUG-00059

Commodities: PbZn 0 t Class N/A Status: Deposit or prospect of unknown status

Company: Rudarsko Topionicarski Basen BOR

Longitude: 21.909 Latitude: 44.224 District: Branicevski

Geology

Ore deposit type (gitology)

Pb-Zn-Ag skarns and stratiform mantos: Pb, Zn, Ag, (Au)

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:
Host rocks Age:

Economy

Exploitation type

Mining method unkown

PbZn Lead + Zinc (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Comments

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202. Karamata S., Knezevic V., Pecskay Z. and Djordjevic M. - (1997) - Magmatism and metallogeny of the Ridanj-Krepoljin belt (eastern Serbia) and their correlation with northern and eastern analogues - Mineralium Deposita, 32, pp. 452-458

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-059

Velebit

General data

Deposit name(s): Velebit Identifier: YUG-00231

Commodities: Petr 0 m3 Class N/A Status: Producing deposit

Company:

Longitude: 19.942 Latitude: 45.977 District:

Geology

Ore deposit type (gitology)

Oil deposits: oil, (S)

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:
Host rocks Age:

Economy

Exploitation type

Mining method unkown

Petr Petroleum (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-m3Average grade:-Reserve:-m3Average grade:-Resource:-m3Average grade:-

Environment

Potential contamination of surface waters, soils and sediments by hydrocarbons and oil products.

Comments

Geological references

Economic references

Veliki Krivelj

General data

Deposit name(s): Veliki Krivelj Identifier: YUG-00076

Commodities: Au 50 t Class B Status: Producing industrial mine

 Cu
 2 385 000 t
 Class
 B

 Mo
 120 000 t
 Class
 B

 Ag
 280 t
 Class
 D

Company: Rudarsko Topionicarski Basen BOR

Longitude: 22.097 Latitude: 44.131 District: Borski

Geology

Ore deposit type (gitology)

Porphyry Cu-Au deposits: Cu, Au, (Ag, Bi, Te) Secondary Cu sulphide (cementation) deposits: Cu

Ore deposit shape

Discordant envelope of disseminated ore

Stockwork (or network) of stringers or veinlets (thickness < 50 cm), discordant on the strata

Mineralization Age: Upper/Late Cretaceous

Ore mineralogy Hydrothermal alteration

ChalcopyriteBiotitizationMolybdeniteSericitizationPyriteArgillic alterationMagnetiteSilicification

Scheelite Fluorite

Host rocks Age: Upper/Late Cretaceous

Hostrock formation names Host rock lithology

Timok andesite complex Andesite

Quartz diorite

Diorite

Economy

Exploitation type

Surface mining

Cu Copper (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:510000 tAverage grade:0.34 %Reserve:- tAverage grade:- %Resource:1875000 tAverage grade:0.34 %

Mo Molybdenum (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:120000 tAverage grade:-Resource:-tAverage grade:-

Ag Silver (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production:60 tAverage grade:0.4 g/tReserve:- tAverage grade:- g/tResource:220 tAverage grade:0.4 g/t

Au Gold (metal)

Ore type: Ore of indeterminate nature

Past production:10 tAverage grade:0.07 g/tReserve:- tAverage grade:- g/tResource:40 tAverage grade:0.07 g/t

Environment

Extreme Acid Mine Drainage production due to the sulfides assemblages and the large alteration halos. This AMD is enhanced by the types of hydrothermal alteration (argillic, sericitic...) that greatly increase acid-generating capacity. Produced mine waters or drainage waters tend to have a high base metal content.

No information related to mine waste deposits as well as to tailings which are potential sources of contaminants in the form of particulates and dissolved metals.

Comments

In 1982, the production design rate was 8 Mt/y, containing more than 30,000 t of Cu and 60,000 t/y of magnetite, 200 t/y of Mo, precious and rare metals (Au,Ag,Pt,Pd,Se and Re).

Data in Laznicka P. (1985) p 975: 3.2 Mt Cu (0.4%), 120,000 t Mo, 240 t Ag and 64 t Au. About 50% supergene enrichment.

Geological references

Bogdanovic PO. - (1976) - Metalogenetska rejonizacija istocne Srbije Translated Title: Metallogenic zoning of eastern Serbia. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 33-34, p. 111-133.

Herrington R.J., Jankovic S. and Kozelj D. - (1998) - The Bor and Majdanpek copper-gold deposits in the context of the Bor Metallogenic Zone (Serbia, Yougoslavia) - MDSG 98 Programme at St Andrews Scotland 13th-15th December 1998, 10 p.

Jancovic S, Milovanovic D, Jelenkovic R, and Hrkovic K. - (1992) - Gold Deposits and Occurences in Serbia: Types, Metallogenic Units and Outlook. - Chair of Economic geology, Faculty of Mining and Geology, University of Belgrade, Belgrade. 285 p.

Jankovic S and Jelenkovic R. - (1995) - Gold mineralization in Yugoslavia; metallogenic environments and associations of minerals. - Studia Universitatis Babes Bolyai, Geologia. 40, (1), p. 85-102.

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S, Herrington RJ, Kozelj D, and Porter TMe. - (1998) - The Bor and Majdanpek copper-gold deposits in the context of the Bor metallogenic zone (Serbia, Yugoslavia) In: Porphyry and hydrothermal copper & gold deposits; a global perspective; conference proceedings. - Porphyry and hydrothermal copper & gold deposits; a global perspective. Perth, West.Aust., Australia. Nov. 30-Dec. 1, 1998.

Jankovic S, Terzic M, Aleksic D, Karamata S, Spasov T, Jovanovic M, Milicic M, Miskovic V, Grubic A, and Antonijevic I. - (1980) - Metallogenic features of copper deposits in the volcano- intrusive complexes of the Bor District, Yugoslavia. - Special Publication of the Society for Geology Applied to Mineral Deposits, 1, p. 42-49.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Karamata S., Knezevic V., Pecskay Z. and Djordjevic M. - (1997) - Magmatism and metallogeny of the Ridanj-Krepoljin belt (eastern Serbia) and their correlation with northern and eastern analogues - Mineralium Deposita, 32, pp. 452-458

Marjanovic D and Hovanec G. - (1979) - Promene rude lezista "Veliki Krivelj" u zavisnosti od lokalnih meteoroloskih faktora i autogenih procesa u rudnoj masi; rastovaranje grozda iz ruda Translated Title: Alterations of the Veliki Krivelj ore deposit as a result of meteorological factors and a - Rudarski Glasnik, 1, p. 39-45.

Sillitoe RH. - (1980) - The carpathian-Balkan porphyry copper belt. A cordilleran perspective. - European Copper Deposits. Jankovic S and Sillitoe RH (Eds), UNESCO - IGCP Projects N° 169 and 63, Belgrade. p. 26-35.

Economic references

Anonymous. - (1979) - Yugoslavia's metal with a future. - Metal Bulletin Monthly, December 1979, p. 30-36.

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Graham G. - (1982) - Bor starts up new mine. - Metal Bulletin, 6729, p. 13. 1982.

Lewis A. - (1983) - Yugoslavia's "RTB Bor" copper combine; Europe's largest copper producer eliminates concentrate imports as the new Veliki Krivelj complex reaches capacity. - E&M J, 184, (10), p. 70-74.

Salatic D. - (1999) - Mineral potential and its valorisation in yugoslavia - "VIII Balkan Mineral Processing Conference", 13-18 september 1999, Beograd, 9 p.

Steblez W. - (1998) - Republics of the former Yugoslavia. - Mining Annual Review, 1998, p. 218-221.

Veliki Majdan

General data

Deposit name(s): Veliki Majdan Identifier: YUG-00045

Commodities: Ag 0 t Class N/A Status: Producing industrial mine

 Cd
 0 t
 Class
 N/A

 Cu
 0 t
 Class
 N/A

 PbZn
 0 t
 Class
 N/A

Company: Hemijska Industrija Zorka Sabac, Veliki Majdan

Longitude: 19.340 Latitude: 44.306 District: Macvanski

Geology

Ore deposit type (gitology)

Pb-Zn-Ag skarns and stratiform mantos: Pb, Zn, Ag, (Au)

Low-sulphidation epi- to mesothermal polymetallic-Ag veins: Pb, Zn, Ag, Mn, Cu, (As, Sb)

Ore deposit shape

Discordant mass (cylinder, sheet, cone, etc.) with filling commonly brecciated

Mineralization Age: Cenozoic

Ore mineralogyHost rock mineralogyHydrothermal alterationMagnetiteQuartzSkarn formationSphaleriteCalciteValleriiteBaritePyrrhotiteSiderite

Chalcopyrite
Galena
Arsenopyrite
Grey copper
Jamesonite
Bournonite
Miargyrite
Pyrargyrite
Stibnite
Safflorite

Host rocks Age: Triassic

Hostrock formation names Host rock lithology

Contact zone of the Boranja granodiorite Undifferentiated metamorphic rock
Triassic limestone Limestone

sic limestone Limestone Andesite
Dacite

Economy

Exploitation type

Underground mining

PbZn Lead + Zinc (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:5.9%Reserve:-tAverage grade:-%Resource:-tAverage grade:-%

Cu Copper (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:0.4%Reserve:-tAverage grade:-%Resource:-tAverage grade:-%

YUG-00045

Ag Silver (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-g/tReserve:-tAverage grade:-g/tResource:-tAverage grade:-g/t

Cd Cadmium (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

The primary mineralization is mainly composed of sulfides whose oxidation generates acid, ferric iron and dissolved metals (Pb, Zn, Cu...) that can affect drainage water, soils and stream sediments.

The potential acid mine drainage generated is buffered by the gangue mineralogy (carbonates) which are acid-consuming minerals. The host rock assemblage (marble and cipolin) which alters to calc-silicates decrease acid-buffering capacity. Presence of As released by the oxidation of arsenopyrite and Grey copper. As which is highly mobile in medium to high pH environment, can be accumulated in stream sediments.

No information related to mine waste deposits as well as to tailings which are potential sources of contaminants in the form of particulates and dissolved metals.

Comments

Podrinje Zone, around the Boranja granodiorite intrusion

In 1982, current output was 60,000 t @ 3.5% Pb, 2.4% Zn, 0.4% Cu, 25% Pyrite, 160 g/t Ag and 200 g/t Cd.

In 1990, the grade was about 5% Pb, 4% Zn, 190 g/t Ag.

Geological references

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S. - (1967) - Metalogenetske epohe i rudonosna podrucja jugoslavije. - Beograd, 1967.

Jankovic S. - (1979) - Antimony deposits in south-eastern Europe. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 37, p. 25-48.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S. - (1984) - Major metallogenic units and ore deposits in Yugoslavia. - Earth Science (Paris) = Sciences de la Terre (Paris), 17, p. 385-394.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Strucl I. - (1981) - Die schichtgebundenen Blei-Zink-Lagerstaetten Jugoslawiens Translated Title: The stratiform lead-zinc deposits of Yugoslavia. - Mitteilungen der Oesterreichischen Geologischen Gesellschaft, 74-75, p. 307-322.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Other references

Other data bases

Carte Métallogénique de l'Europe 26-043

Veluce

General data

Deposit name(s): Veluce Identifier: YUG-00095

Commodities: Co 2 400 t Class C Status: Dormant deposit

Ni 36 900 t *Class* C Pltd 0 t *Class* N/A

Company:

Longitude: 21.084 Latitude: 43.544 District: Rasinski

Geology

Ore deposit type (gitology)

Laterite-related ore deposits: Fe, Mn, Ni-Co, Au, Pt, corundum, P, REE, Nb, etc.

Modern placers, deposits associated with tillites, etc.: Au, Pt, Sn,Ti, REE, diamond, gemstones, (Zr, etc.)

Ore deposit shape

Concordant to subconcordant envelope of disseminated ore

Mineralization Age:

Ore mineralogy Host rock mineralogy

Nontronite Silica

Magnesite (Giobertite)

Host rocks Age:

Host rock lithology
Ultrabasic rock
Peridotite

Serpentinite

Economy

Exploitation type

Mining method unkown

Ni Nickel (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %Resource:36900 tAverage grade:1.23 %

Co Cobalt (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production:- tAverage grade:- %Reserve:- tAverage grade:- %

Resource: 2400 t Average grade: 0.08 %

Pltd Platinoids, group (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

The main potential environmental problems are related to :

⁻ the clay minerals assemblage existing in a lateritic context. Trough erosion of exposed mining areas, those assemblages generate high suspended solids content in surface water that can produce many impacts associated with surface waters, groundwater and terrestrial ecosystems;

⁻ The disssolved metals (Ni, Co and Fe, Mn) that migrate from old mining operations to local ground and surface water.

YUG-00095

Comments

 $\label{eq:continuous} \mbox{Veluce-Rudjinci Ore Field (Boev and Jankovic - 1996): Exploration carried out determined possible ore reserves of 3 Mt @ 1.23\% Ni and 0.08\% Co.}$

Occurrences of placer minerals of Pt (Jankovic - 1982).

Geological references

Boev B. and Jankovic S. - (1996) - Nickel and nikeliferous iron deposits of the Vardar Zone (SE Europe) with particular reference to the Rzanovo-Studena Voda ore-bearing series - University "St. Kiril and Metodij" - Skopje. Faculty of Mining and Geology - Stip. Geological Department. Special Issue n° 3, 273 p.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-163

Veta

General data

Deposit name(s): Veta Identifier: YUG-00197

Commodities: Gr 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 22.173 Latitude: 43.201 District: Pirotski

Geology

Ore deposit type (gitology)

Industrial rocks and minerals related to metamorphic rocks: and alusite group, wollastonite, graphite, etc.

Ore deposit shape

Concordant to subconcordant envelope of disseminated ore

Mineralization Age:
Ore mineralogy

Graphite

Host rocks Age: Carboniferous

Host rock lithology
Schist (s.l.), phyllite

Economy

Exploitation type
Unworked

Gr Graphite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Possible contamination of surface water by suspended matter.

Comments

The graphite content ranges from 9 to 18% C. Preliminary flotation tests have proved that products with 45-50% C can be obtained from the ore. The graphite lenses are up to 40 m long and 1-4m thick.

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Vidovacki Krs

General data

Deposit name(s): Vidovacki Krs Identifier: YUG-00218

Commodities: Feld 0 t Class N/A Status: Deposit of unknown status

 Mica
 0 t
 Class
 N/A

 Qtz
 0 t
 Class
 N/A

Company:

Longitude: 21.543 Latitude: 43.167 District: Toplicki

Geology

Ore deposit type (gitology)

Industrial rocks and minerals related to plutonic rocks: ornamental stones, feldspar, nepheline, etc.

Pegmatites: Sn, Nb-Ta, Li-Be, gemstones, cryolite, mica, etc.

Ore deposit shape

Mineralized dyke (orebody: magmatic rock)

Mineralization Age:

Ore mineralogy

Feldspar Quartz Muscovite Biotite

Host rocks Age:

Host rock lithology
Pegmatite

Economy

Exploitation type

Surface mining

Feld Feldspar, nepheline (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Qtz Massive quartz, blocks for ferrosilicon (SiO2)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Mica Mica, sheet (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Possible contamination of surface water by suspended matter.

Comments

Exploitation of feldspar from Prokuplje pegmatitic province was initiated in 1956. During the 80st the flotation process annually yields 50,000 t of feldspar concentrate, 36,000 t of quartz concentrate and 14,000 t of mica concentrate.

YUG-00218

The deposit of Vidovacki Krs contains about 60% of feldspar, 30% of quartz, 5% muscovite and 5% biotite.

Geological references

Anonymous. - (1982) - Jugoslavija za Rudarstvo. - 11th World Mining Congress, Beograd. 172 p.

Economic references

Vlajna

General data

Deposit name(s): Vlajna Identifier: YUG-00219

Commodities: Feld 0 t Class N/A Status: Deposit of unknown status

Company:

Longitude: 21.887 Latitude: 42.795 District: Jablanicki

Geology

Ore deposit type (gitology)

Industrial rocks and minerals related to plutonic rocks: ornamental stones, feldspar, nepheline, etc.

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:
Host rocks Age:

Economy

Exploitation type

Mining method unkown

Feld Feldspar, nepheline (substance)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

No data available.

Comments

Kukavica Mountains, South of Leskovac, feldspar deposit indicated on the SFR Yugoslavia geological map - 1:500,000 - 1970.

Geological references

Economic references

Vranovac

General data

Identifier: YUG-00174 Deposit name(s): Vranovac

Ag 0 t N/A Status: Deposit of unknown status Commodities: Class

> 0 t Au Class N/A 0 t Ri N/A Class 0 t Class N/A

Company:

District: Macvanski 44.329 Longitude: 19.252 Latitude:

Geology

Ore deposit type (gitology)

Fe (magnetite) skarns: Fe, (Co)

Ore deposit shape

Discordant mass or lens of massive to submassive ore

Age: Neogene (Miocene to Pliocene) Mineralization

Ore mineralogy Host rock mineralogy Hydrothermal alteration Skarn formation

Magnetite Garnet Pyrrhotite Diopside Arsenopyrite Hedenbergite Chalcopyrite **Epidote** Scheelite Ilvaite

Pyrite Sphalerite Galena **Bismuth** Bismuthinite Tetradymite Tellurobismuthite

Host rocks Age: Upper/Late Carboniferous

(Stephanian-Westphalian, Upper/Late Namurian, Silesian, Pennsylvanian)

Hostrock formation names Host rock lithology

Permo Carboniferous marble and schist Marble, cipolin (crystalline limestone)

Neogene Boranja granodiorite Schist/shale Granodiorite

Skarn

Economy

Exploitation type

Unworked Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: Average grade: Reserve: t Average grade: Average grade: Resource: t

Αu Gold (metal)

Ore type: Ore in which the native element forms inclusions (sulphides, etc.)

Past production: t Average grade: g/t Reserve: t Average grade: 0.84 g/t t g/t Resource: Average grade:

Ag Silver (metal)

Ore type: Ore in which the native element forms inclusions (sulphides, etc.)

Past production:-tAverage grade:-g/tReserve:-tAverage grade:640 g/tResource:-tAverage grade:-g/t

Bi Bismuth (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-%Reserve:-tAverage grade:1.88%Resource:-tAverage grade:-%

Environment

High acid generation potential due to the sulfides minerals contained in the primary ore.

The Acid Rock Drainage produced may be partly buffered by the limestone and the skarn formation of the host lithology, but in general calc-silicate skarn minerals show low neutralizing reactivity with acid waters.

Expected dissolved contents of Cu, Zn and Pb as well as As in the drainage waters with possible concentrations of those metals in the stream sediments.

Comments

The ore contains 0.84 g/t Au, 640 g/t Ag, 1.88% Bi

Geological references

Jancovic S, Milovanovic D, Jelenkovic R, and Hrkovic K. - (1992) - Gold Deposits and Occurences in Serbia: Types, Metallogenic Units and Outlook. - Chair of Economic geology, Faculty of Mining and Geology, University of Belgrade, Belgrade. 285 p.

Economic references

Vrelo

General data

Deposit name(s): Vrelo Identifier: YUG-00229

Commodities: Asb 15 000 000 t Class A Status: Industrial project under development

Company: Drvna industrija KOPAONIK - Kursumlija

Longitude: 21.250 Latitude: 43.057 District:

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to basic-ultrabasic magmatic rocks

Asbestos, talc or magnesite deposits hosted by basic and ultrabasic rocks

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:
Host rocks Age:

Host rock lithology
Basalt

Economy

 $Exploitation \ type$

Surface mining

Asb Asbestos (substance)

Ore type: Ore of indeterminate nature

Past production:- tAverage grade:-Reserve:15000000 tAverage grade:-Resource:- tAverage grade:-

Environment

Dust emission and fallout of fibrous minerals can pose a risk to human health.

Comments

Project of mine and plant in order to produce basalt fiber with annual production capacity of 2,700 t of basalt continuous fibers.

Geological references

Economic references

Simic R., Jakovljevic S., Gilic N. and Dukic R. - (2001) - Feasibility study on building a plant for continuous basalt fibres production in Kursumlija. - Drvna industrija Kopaonik - Kursumlija. Rudarsko geoloski fakultet - Beograd, 38 p..

Steblez W. - (1998) - Republics of the former Yugoslavia. - Mining Annual Review, 1998, p. 218-221.

Vrska Cuka

General data

Deposit name(s): Vrska Cuka Identifier: YUG-00147

Commodities: Coal 0 t Class N/A Status: Producing small-scale mine

Company: Rudnik antracita VRSKA CUKA - EPS

Longitude: 22.336 Latitude: 43.824 District: Zajecarski

Geology

Ore deposit type (gitology)

Coal deposits

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

MineralizationAge: Lower/Early Jurassic (Lias)Host rocksAge: Lower/Early Jurassic (Lias)

Age: Lower/Early Jurassic (Lias)

Host rock lithology

Coal (anthracite, graphite)

Medium- to fine-grained detrital rock

Economy

Exploitation type

Mining method unkown

Coal Coal, lignite (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Too few data for an environmental signature.

Comments

Production is limited by complex mining-geological conditions. 3 coal seams are of interest.

Vrska Cuka bituminous coal contains on average 2 to 3% of moisture, 14% of ash, 1% sulphur and its heating value is about 27,000 kJ/kg.

Geological references

Cveticanin R. - (1982) - Review of Yugoslav coal basins. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 46-67. Tsvetichanin R. - (1976) - Petrography of coals in Yugoslav deposits of various ages. - Lithology and Mineral Resources, 11, (1), p. 120-126.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Davidovic S, Perisic M, and Bizjak A. - (1987) - Geostatistic processing of deposit Vrska Cuka; application of the specific methology in coal deposit estimation in all stages of operation life of the mine. - The Mining Pribam in the Science and Technology 1987; Mathematical methods in geology. p. 7-7.

Vuckovica

General data

Deposit name(s): Vuckovica Identifier: YUG-00208

Commodities: Agt 0 t Class N/A Status: Dormant deposit

Company:

Longitude: 20.794 Latitude: 43.948 District: Sumadijski

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to basic-ultrabasic magmatic rocks

Asbestos, talc or magnesite deposits hosted by basic and ultrabasic rocks

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Mineralization Age:

Ore mineralogy
Opal Host rock mineralogy
Magnesite (Giobertite)

Chalcedony Dolomite
Agate Silica

Host rocks Age:

Host rock lithology
Ultrabasic rock
Serpentinite

Economy

Exploitation type
Unworked

Agt Agata, chalcedony, jasper (substance)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Possible contamination of surface water by suspended matter.

Comments

Geological references

Ilic M. - (1998) - Gem raw materials and their occurrence in Serbia - Juvelirske mineralne sirovine i njihova nalazista u Srbiji - Beograd, Univerzitet, Rudarsko-geoloski fakultet, 140 p.

Economic references

Zajaca

General data

Deposit name(s): Zajaca Identifier: YUG-00044

Commodities: Sb 90 000 t Class A Status: Old industrial mine, abandoned deposit

Company: Zajaca - Rudarsko - Topionicarski Basen

Longitude: 19.248 Latitude: 44.464 District: Macvanski

Geology

Ore deposit type (gitology)

Vein and disseminated Sb deposits: Sb, Hg, As, (Au, Tl)

Jasperoid-hosted stratabound low sulphidation epithermal veins: Hg, Sb

Ore deposit shape

Stratabound envelope of disseminated ore Field of discordant lodes (n*km2, n*ha)

Mineralization

Age: Cenozoic

Ore mineralogy Host rock mineralogy Hydrothermal alteration

Stibnite Quartz Silicification

Pyrite Chalcopyrite Galena

Host rocks Age: Upper/Late Carboniferous

(Stephanian-Westphalian, Upper/Late Namurian, Silesian, Pennsylvanian)

Hostrock formation names Host rock lithology

Late Carboniferous limestone Undifferentiated metamorphic rock

Paleozoic schists Limestone

Economy

Exploitation type

Sublevel stoping

Sb Antimony (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:90000 tAverage grade:2.5 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Environment

Generation of Acid Mine Drainage due to the content of iron sulfides and others sulfides.

Potential production of dissolved metals like Sb in surface water.

Comments

Podrinje Zone, around the Boranja granodiorite intrusion

The area produced about 90,000 t of Sb since 1890, with the deposits of Brasina, Rujevac, etc. Exploitation stopped in 1990.

Geological references

Durickovic A. - (1982) - Metalogenija rudnog polja Brasina-Zajaca-Stolice-Dobri Potok Translated Title: Metallogeny of the Brasina mining field, Zajaca, Stolice, Dobri Potok. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 40, p. 17-53. Jankovic S and Petkovic M. - (1980) - The main lead, zinc and copper deposits of Yugoslavia; excursion No. 202 C. - Yugoslavia; outline of Yugoslavian geology; Excursion 201 A-202 C. Grubic A (Ed), Int, Geol. p. 75-94.

Jankovic S and Petkovic M. - (1982) - Metallogenetic Epochs and Provinces of Yugoslavia. - Mining of Yugoslavia. 11th World Mining Congress, Beograd. p. 24-45.

Jankovic S. - (1967) - Metalogenetske epohe i rudonosna podrucja jugoslavije. - Beograd, 1967.

Jankovic S. - (1979) - Antimony deposits in south-eastern Europe. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 37, p. 25-48.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202. Jankovic S. - (1984) - Major metallogenic units and ore deposits in Yugoslavia. - Earth Science (Paris) = Sciences de la Terre (Paris), 17, p. 385-394.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Salatic D. - (1999) - Mineral potential and its valorisation in yugoslavia - "VIII Balkan Mineral Processing Conference", 13-18 september 1999, Beograd, 9 p.

Other references

Other data bases

Carte Métallogénique de l'Europe

26-042

Zaovine

General data

Deposit name(s): Zaovine Identifier: YUG-00192

Commodities: Ti 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 19.406 Latitude: 43.871 District: Zlatiborski

Geology

Ore deposit type (gitology)

Gabbro-norite hosted deposits of disseminated titano-magnetite: Fe, Ti, (V, P)

Ore deposit shape

Stratabound envelope of disseminated ore

Mineralization Age:

Ore mineralogy

Magnetite Titanomagnetite

Ilmenite

Host rocks

Age:

Hostrock formation names

Tara Mountain Gabbro

Gabbro

Host rock lithology

Gabbro

Dolerite, diabase

Economy

Exploitation type

Unworked

Ti Titanium, general (TiO2)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

No specific environmental signature.

Comments

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Zavlaka

General data

Deposit name(s): Zavlaka Identifier: YUG-00191

Commodities: PbZn 0 t Class N/A Status: Deposit or prospect of unknown status

Company:

Longitude: 19.500 Latitude: 44.464 District: Macvanski

Geology

Ore deposit type (gitology)

Carbonate-hosted base metals deposits: Pb-Zn-Ag, Ba, F

Ore deposit shape

Atypical, unspecified or ill-defined form

MineralizationAge: TriassicHost rocksAge: Triassic

Host rock lithology
Limestone

Economy

Exploitation type

Unworked

PbZn Lead + Zinc (metal)

Ore type: Ore of indeterminate nature

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

No data available.

Comments

Geological references

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Zeljin

General data

Deposit name(s): Zeljin Identifier: YUG-00177

Commodities: Fe 0 t Class N/A Status: Group of mineral occurrences

Company:

Longitude: 20.793 Latitude: 43.429 District: Rasinski

Geology

Ore deposit type (gitology)

Unspecified syn- to late orogenic ore deposits

Unspecified ore deposits related to volcanic systems and shallow intrusives

Ore deposit shape

Discordant lode or vein (thickness > 50 cm), in clusters or isolated

Mineralization Age: Neogene (Miocene to Pliocene)

Ore mineralogy Host rock mineralogy

Hematite Quartz

Pyrite

Host rocks Age:

Host rock lithology
Serpentinite
Granite (s.l.)

Economy

Exploitation type

Mining method unkown

Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Few data available to determine an environmental signature.

Comments

Grade: 50% Fe, 20-25% SiO2 and 0.5% S.

Geological references

Jankovic S. - (1977) - The iron ore deposits in Yugoslavia. - The iron ore deposits of Europe and adjacent areas; explanatory notes to the International map of the iron ore deposits of Europe, 12,500,000; Volume I, Text and figures. Zitzmann A (Ed), Bundesanst, Geowiss. p. 411-418.

Economic references

Zijaca

General data

Deposit name(s): Zijaca Identifier: YUG-00121

Commodities: PbZn t Class N/A Status: Deposit or prospect of unknown status

Company: TREPCA Mining and Metallurgical Complex

Longitude: 20.914 Latitude: 42.964 District: Kosovo

Geology

Ore deposit type (gitology)

Replacement deposits (skarns, mantos): Au, Cu, Pb, Zn, Ag, W, Mo, Sn, Fe

Ore deposit shape

Atypical, unspecified or ill-defined form

Mineralization Age:
Host rocks Age:

Economy

Exploitation type
Unworked

PbZn Lead + Zinc (metal)

Environment

No data.

Comments

Trepca ore field

Geological references

Jankovic S. - (1978) - Izotopni sastav olova u pojedinim tertsijarnim olovo-tsinkovim rudishtima Srpsko-makedonske metalogenetske provintsije Translated Title: The isotopic composition of lead in some Tertiary lead-zinc deposits within the Serbo-Macedonian metallogenic province - Geoloshki Anali Balkanskoga Poluostrva, 42, p. 507-525.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Economic references

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.

Zimovnik

General data

Deposit name(s): Zimovnik Identifier: YUG-00166

Commodities: PbZn 0 t Class N/A Status: Group of mineral occcurrences

Company:

Longitude: 20.744 Latitude: 43.257 District: Raski

Geology

Ore deposit type (gitology)

Unspecified ore deposits related to volcanic systems and shallow intrusives

Unspecified ore deposits related to basic-ultrabasic magmatic rocks

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Mineralization Age: Neogene (Miocene to Pliocene)

Ore mineralogy Hydrothermal alteration

Arsenopyrite Silicification
Pyrrhotite Sericitization
Pyrite Chloritization

Galena
Sphalerite
Tetrahedrite
Loellingite
Boulangerite
Silver
Jamesonite
Pentlandite
Breithauptite
Smaltite

Chloanthite

Host rocks Age:

Host rock lithology
Serpentinite
Dacite
Andesite

Economy

 $Exploitation \ type$

Unworked

PbZn Lead + Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Acid generation potential due to the sulfides and sulfosalts content and enhanced by the hydrothermal alteration type. Potential release of As into the environment with possible concentration in the stream sediments. Expected dissolved contents of Ni, Co, Fe, Cu, Sb in drainage waters.

Comments

Geological references

Novovic T. - (1977) - Geolosko-strukturne karakteristike i mineraloski sastav Pn-Zn lezista u Zimovniku (Kopaonik) Translated Title:

Geological- structural characteristics and mineral composition of lead-zinc deposits at Zimovnik, Kopaonik. - Glasnik Prirodnjackog Muzeja u Beogradu, Serija A: Mineralogija, Geologija, Paleontologija, 32, p. 15-20.

Radulovic B. and Savic R. - (1995) - Deposits and the potential of base and precious metals in the ore field Raska. - Geology and Metallogeny of the Kopaonik Mt. Symposium, june 1995.

Economic references

Zitni Potok

General data

Deposit name(s): Zitni Potok Identifier: YUG-00082

Commodities: Fe 100 000 t Class E Status: Deposit of unknown status

Company:

Longitude: 21.594 Latitude: 43.090 District: Topolicki

Geology

Ore deposit type (gitology)

Banded iron formations (BIF "Superior Fe"): Fe

Ore deposit shape

Stratiform bed: single or multi-layered (syn-depositional with host rock)

Mineralization Age: Precambrian

Ore mineralogy

Magnetite
Chalcopyrite
Pyrrhotite
Ilmenite
Hematite
Rutile

Host rocks Age: Precambrian

Hostrock formation names Host rock lithology

Quartz magnetite rocks Ferriferous quartzite, Banded Iron

Formation (BIF), itabirite Chlorite schist of igneous origin

Gneiss (s.l.)

Economy

Exploitation type
Unworked

Fe Iron (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production: - t Average grade: - %

Reserve: 100000 t Average grade: 50 % Resource: - t Average grade: - %

Environment

The presence of chalcopyrite and pyrrhotite when oxydized may generate Acid Mine Drainage and readily soluble salts. Particulate and colloidal iron compounds in surface water may be notable.

Comments

The ore contains 53-60% Fe, 0.1-0.2% Mn, 0.2% S and 4-7% SiO2.

The reserve is estimated as a few million tons.

Geological references

Anonymous. - (1978) - The Iron Ore Deposits of Europe and adjacent Areas. - Explanatory Notes to the International Map of the Iron Ore Deposits of Europe, 1:2,500,000. Zitzmann A. Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover. 386 p. Antonijevic I. - (1983) - Lezista gvozda Srbije Translated Title: The iron ore deposits of Serbia. - Vesnik, Zavod za Geoloska i Geofizicka Istrazivanja, Serija A: Geologija, 41, p. 5-40.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S., Serafimovski T., Jelenkovic R. and Cifliganec V. - (1997) - Metallogeny of the Vardar Zone and Serbo-Macedonian Mass - Proceedings of the Symposium "Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif". Plate tectonics aspects of Alpine Metallogeny in the Carpatho-Balkan Region. Faculty of Mining and Geology Stip, pp. 29-67

Economic references

Other references

Other data bases

Carte Métallogénique de l'Europe 26-106 The Iron Ore Deposits of Europe - 1978 YU30

Zlace

General data

Deposit name(s): Zlace Identifier: YUG-00125

Zlot

Commodities: Ag 0 t Class N/A Status: Old industrial mine, abandoned deposit

Au 0 t Class N/A

Company: Rudarsko Topionicarski Basen BOR

Longitude: 22.022 Latitude: 44.066 District: Borski

Geology

Ore deposit type (gitology)

Low-sulphidation epi- to mesothermal polymetallic-Ag veins: Pb, Zn, Ag, Mn, Cu, (As, Sb)

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Mineralization Age: Upper/Late Cretaceous

Ore mineralogy Host rock mineralogy

Gold Quartz
Pyrite Calcite
Sphalerite Barite

Galena Marcasite Grey copper Chalcopyrite Bornite

Host rocks Age: Upper/Late Cretaceous

Hostrock formation names Host rock lithology
Upper Cretaceous andesites Andesite

Economy

Exploitation type

Underground mining

Au Gold (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:-tAverage grade:-g/tReserve:-tAverage grade:-g/tResource:-tAverage grade:-g/t

Ag Silver (metal)

Ore type: Ore in which the element does not form a distinct mineral phase (i.e. camouflaged or

refractory elem

Past production:-tAverage grade:-Reserve:-tAverage grade:-Resource:-tAverage grade:-

Environment

Production of Acid Rock Drainage due to the sulfidic composition of the primary ore.

Presence of calcite (an acid consuming mineral) in the gangue that can partly buffer the acidity produced.

Existence of CN or Hg associated with the gold mineral processing?

Comments

In exploitation up to 1939 by Beshina Gold Ld. Grade ore is variable, 2 to 23 g/t Au, 20 to 250 g/t Ag, about 1% Pb, 1.5% Zn and locally up to 1% Sb.

State of the resource in 1930: 41,000t @ 8.9 g/t Au and 65 g/t Ag

Geological references

Jancovic S, Milovanovic D, Jelenkovic R, and Hrkovic K. - (1992) - Gold Deposits and Occurences in Serbia: Types, Metallogenic Units and Outlook. - Chair of Economic geology, Faculty of Mining and Geology, University of Belgrade, Belgrade. 285 p.

Jankovic S, Terzic M, Aleksic D, Karamata S, Spasov T, Jovanovic M, Milicic M, Miskovic V, Grubic A, and Antonijevic I. - (1980) - Metallogenic features of copper deposits in the volcano- intrusive complexes of the Bor District, Yugoslavia. - Special Publication of the Society for Geology Applied to Mineral Deposits, 1, p. 42-49.

Economic references

Zuta Prlina

General data

Deposit name(s): Zuta Prlina Identifier: YUG-00113

Jekalce

Commodities: Pb 19 000 t Class C Status: Deposit of unknown status

Zn 18 000 t *Class* **D**

Company: TREPCA Mining and Metallurgical Complex

Longitude: 20.889 Latitude: 43.151 District: Kosovo

Geology

Ore deposit type (gitology)

Low-sulphidation epi- to mesothermal polymetallic-Ag veins: Pb, Zn, Ag, Mn, Cu, (As, Sb)

Ore deposit shape

Field of discordant lodes (n*km2, n*ha)

Mineralization Age: Neogene (Miocene to Pliocene)

Ore mineralogy Host rock mineralogy

Pyrite Quartz Sphalerite Calcite

Galena
Chalcopyrite
Pyrrhotite
Arsenopyrite
Grey copper
Argentite
Boulangerite
Gold
Proustite

Host rocks Age:

Hostrock formation names

Serpentinite - Quartzlatite contact

Serpentinite
Latite

Economy

Exploitation type

Underground mining

Pb Lead (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:19000 tAverage grade:2.5 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Zn Zinc (metal)

Ore type: Ore in which the element forms a distinct mineral phase

Past production:18000 tAverage grade:2.5 %Reserve:- tAverage grade:- %Resource:- tAverage grade:- %

Environment

High acid generation potential due to the sulfidic composition of the primary ore (highly reactive sulfides). The presence of calcite (an acid-consuming mineral) within the gangue tends to increase the acid-buffering capacity of the rocks. Release of dissolved base metals (Pb, Zn,...) into the environment as well as As (presence of sulfoarsenites) that can accumulate in the stream sediments.

The ore processing plant located in Lepocavic has generated large amounts of tailings (8 Mt).

Comments

The mine has been in operation since 1971. In 1981, current output was 60,000 t/y of ore averaging 2% Pb and 5% Zn. This output should be increase by 20,000 t in 1983.

ITT/UNMIK Mission (12/2000): Past production (1972-1982): 734,000 t @ 2.5% Pb and 2.5 % Zn.

Geological references

Barral J.P. - (2001) - Réhabilitation du combinat de Trepca au Kosovo - Revue de la Société de l'Industrie Minérale, IM Environnement, N°12, Avril 2001, pp. 6-10.

Jankovic S. - (1982) - Yugoslavia. - Southeast Europe. Dunning FW, Mykura W, and Slater D (Eds), Mineral, Soc. p. 143-202.

Jankovic S. - (1984) - Major metallogenic units and ore deposits in Yugoslavia. - Earth Science (Paris) = Sciences de la Terre (Paris), 17, p. 385-394.

Novovic T. - (1979) - Marusic Pb-Zn pojava na Kopaoniku Translated Title: Marusic Pb- Zn occurrence at Kopaonik. - Glasnik Prirodnjackog Muzeja u Beogradu, Serija A: Mineralogija, Geologija, Paleontologija, 34, p. 59-64.

Economic references

Anonymous. - (1982) - Rudnici Jugoslavije. - 11th World Mining Congress, Beograd.

Chadwick JR. - (1982) - Yugoslavia; mining industry with considerable potential. - World Mining, 35, 11, p. 52-55.